Environmental Services Division ### **SEPA** Investigation of Soil And **Water Contamination At** Western Processing, King County, Washington September to November, 1982 # AT WESTERN PROCESSING INC., KING CO., WA PART I OF II ENVIRONMENTAL SERVICES DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY - REGION X 1200 SIXTH AVENUE SEATTLE, WASHINGTON 98101 MAY 1983 #### DISCLAIMER This report has been reviewed by the U.S. Environmental Protection Agency and approved for public release. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Environmental Protection Agency. #### **ACKNOWLEDGEMENTS** The EPA is grateful to Hussein Aldis for editing and providing additional interpretive sections to this report and also for the assistance and critical review of many people from both the U.S. Environmental Protection Agency (EPA) Region X and the Region X Field Investigation Team of Ecology and Environment, Inc. (EEI) in Seattle particularly Thomas Tobin and Carol Mitrani. A special thanks is due to the EPA Region X Hazardous Waste Site Investigation Team and to the EEI staff members who performed the on-site study. Their hard work under difficult conditions made this report possible. Thanks are also due to Jane Gans of EEI for her assistance in typing and producing the report, and to Billie Lee of EPA for her many hours of typing assistance in the early stages of report production. #### TABLE OF CONTENTS PART I | | | Page | |------|---|--------------------------------------| | 1.0 | SUMMARY | . 1 | | 2.0 | INTRODUCTION | . 2 | | 3.0 | GEOLOGY AND HYDROLOGY | . 6 | | 4.0 | PRELIMINARY SITE INVESTIGATION AND SITE SAFETY | . 11 | | | SAMPLING PROGRAM 5.1 Well Installation and Soil Sampling 5.2 Groundwater Sampling 5.3 Wash Water and Waste Water Samples 5.4 Chemical Analysis 5.5 Sample Documentation and Handling 5.6 Quality Assurance Program | . 13
. 16
. 17
. 17 | | 6.0 | RESULTS AND DISCUSSION 6.1 Introduction | . 22
. 23
. 23
. 24
. 27 | | BIBL | IOGRAPHY | | APPENDIX A - 129 PRIORITY POLLUTANTS LIST APPENDIX B - SUMMARY ANALYTICAL RESULTS FOR PRIORITY POLLUTANTS #### LIST OF TABLES | | Page | |---|------| | TABLE 1 WATER TABLE ELEVATIONS | | | TABLE 2 SUMMARY OF SOIL SAMPLING LOCATIONS | 15 | | TABLE 3 CHLORIDE AND TOTAL DISSOLVED SOLIDS RESULTS | 18 | | TABLE 4 CONDUCTIVITY AND PH READINGS AT WELLS | 19 | | TABLE 5 EP TOXICITY TEST RESULTS | 25 | | TABLE 6 BASE/NEUTRAL EXTRACTIBLES (>1ppm) | 26 | | TABLE 7 KNOWN CARCINOGENS | 28 | | TABLE 8 SUSPECTED CARCINOGENS | 29 | | TABLE 9 DATA SUMMARY FOR SELECTED WELLS | 31 | | TABLE 10 DATA SUMMARY FOR SELECTED SOIL SAMPLES | 32 | | | | #### LIST OF FIGURES | Part of the second seco | age | |--|-----| | FIGURE 1 LOCATION MAP | 3 | | FIGURE 2 SITE PLAN | ļ | | FIGURE 3 MONITORING WELL LOCATIONS | , | | FIGURE 4 WATER TABLE NOVEMBER 1982 |) | | FIGURE 5 WATER TABLE MAY 1983 |) | | FIGURE 6 AMBIENT AIR SAMPLING LOCATIONS | 2 | | FIGURE 7 SOIL SAMPLING LOCATIONS | | | FIGURE 8 PRIORITY POLLUTANT METALS IN SOILS (ppm) | 3 | | FIGURE 9 PRIORITY POLLUTANT METALS IN SHALLOW GROUNDWATER (mg/1) 34 | | | FIGURE 10 TOTAL PRIORITY POLLUTANT VOLATILES IN SOILS (ppm) | , | | FIGURE 11 PRIORITY POLLUTANT VOLATILES IN SHALLOW GROUNDWATER (mg/1) 36 | | | FIGURE 12 NON PRIORITY POLLUTANT SOLVENTS IN SHALLOW GROUNDWATER | , | | FIGURE 13 TOTAL PRIORITY POLLUTANT ACID EXTRACTIBLES IN SOILS (ppm) 39 |) | | FIGURE 14 PRIORITY POLLUTANT ACID EXTRACTIBLES IN SHALLOW GROUNDWATER 40 | | | FIGURE 15 | | | TOTAL PRIORITY POLLUTANT BASE/NEUTRAL EXTRACTIBLES IN SOILS (ppm) | | #### PART II #### TABLE OF APPENDICES APPENDIX A GEOLOGIC WELL LOGS AND CROSS SECTIONS #### APPENDIX B ANALTYICAL DATA TABLES Section 1. Decontamination and Wash Water Data Section 2. Chlorides and Total Dissolved Solids Data Section 3. Conductivity and pH Data Section 4. Priority Pollutant Data Section 5. Non-Priority Pollutants Data Section 6. Tentatively Identified Compounds Section 7. Sample Identification Section 8. Correction Factors From Wet to Dry Weight APPENDIX C LIST OF 129 PRIORITY POLLUTANTS APPENDIX D SAMPLE DOCUMENTATION APPENDIX E QUALITY ASSURANCE FORMS APPENDIX F SITE SAFETY PLAN 1.0 SUMMARY Western Processing, Inc., Kent, Washington, which operated as an industrial waste recycling facility, was suspected of having contaminated soil, groundwater and surface water on and around its 13-acre site. During October 1982 a series of 32 on-site holes and six offsite holes from 15 to 30 feet deep were excavated at 30 locations in order to sample the soil and to install wells and well points. Eleven samples of surface soil and seven hand augered samples of soil from a berm on the east edge of the site were also taken. In all, 130 soil samples were taken and 35 groundwater samples were obtained from the wells and well points. Additionally, the water used to wash down personnel, vehicles and equipment coming off the site was sampled. All samples were analyzed for a wide variety of organic chemicals and metals, and groundwater was checked for acidity and alkalinity. Significant levels of many toxic substances were found in a high proportion of the soil and groundwater samples; these included 21 known carcinogens and 28 suspected carcinogens. Off site wells indicate that some of these toxic substances have migrated across the site boundaries. Contamination in the groundwater extends down to at least 30 feet from ground surface and out to at least 200 feet north of the site boundary. Groundwater levels under the site imply that contaminated groundwater will move offsite to west, east and north. At least 19 of the soil samples and six of the groundwater samples were defined as hazardous waste by the standards of the Resource Conservation and Recovery Act (RCRA) by reason of their content of soluble toxic metal. In one well the groundwater was so alkaline that it was a RCRA hazardous waste by reason of its corrosivity. The used wash water collected after decontamination of vehicles, personnel and equipment, contained high levels of lead and other toxic substances. Western Processing began operations in 1957 as an animal by-products and brewer's yeast processor. Since then the operation expanded to include the handling of solvents, flue dust, battery chips, acids, cyanides and a wide variety of industrial waste. The company has Interim Status as a storage facility for hazardous materials as regulated by the Resource Conservation and Recovery Act (RCRA). It has no state or local permits for discharge to a sewer, to surface water or to the ground and groundwater. The site is located within the City of Kent but about four miles north of the central business district. It lies in Section 1, Township 22N Range 4E, Willamette Meridian, the entrance is at latitude 47°25'37"N, longitude 122°14'31"W, and the address is 7215 South 196th Street (see Fig. 1). The facility occupies about 13 acres on which there is a small laboratory, a solvent recycling plant, a fertilizer plant, bulk storage tanks, drum storage areas, piles of flue dust, construction debris, and large cement-block above ground storage lagoons for liquid wastes, cooling water and process water. Mill Creek, also known as King County Drainage Ditch #1, runs across the northwest corner of the site from south to north. Along the eastern boundary the Kent Bicycle Trail occupies a former railroad right-of-way, along which runs a high voltage power line and a drainage ditch. Beyond these to the east is the Burlington Northern Railroad. Access is from South 196th Street along the northern boundary (Figure 2). The site lies in the flood plain
of the Duwamish/Green River. The area is very flat, with an average elevation around 20 feet above mean sea level. During May 1982 the U.S. Environmental Protection Agency (EPA) conducted a stream survey around Western Processing Inc. (EPA 1982). Twenty-six of the priority pollutants (Appendix & Part I) were found in the surface waters around the site, all of which were subsequently found on-site. During June 1982 the Municipality of Metropolitan Seattle, (METRO), sampled surface water upstream and downstream of Western Processing in Mill Creek. A marked increase in heavy metal content, mostly zinc, was noted. As a result of these findings and an on-site inspection, the EPA issued an order under Section 3013 of the Resource Conservation and Recovery Act (RCRA), to require the owner to conduct such monitoring as would be reasonable to acertain the nature and extent of hazard to human health or the environment presented by the site. After the site owner had declared himself unable to carry out the necessary monitoring, a court order was obtained to enable the EPA and its contractors to investigate the site. Figure 1 WESTERN PROCESSING Kent, Washington Figure 2 To help the reader the report has been divided into two parts. The first is the text with explanatory figures and tables. The tables and figures are placed immediately after their first mention in the text, with the exceptions of the summary table of analytical results for priority pollutants, and the list of priority pollutants, which are appendices to Part I. Part II consists of the Table of Contents, Summary and Appendices, including all well logs and full analytical data. The Green River valley lies within the Puget Sound Lowland which consists of a broad plain of glacial sediments cut into by a network of marine embayments. The Green River valley was formerly one of those embayments and is filled with sand, gravel, silt and clay brought down by the White, Green, Black and Cedar Rivers (Mullineaux, 1970). During the course of the investigation, the Western Processing site itself was found to be underlain by sand, silt, gravel, clay, peat and artificial fill. In places as much as six to eight feet of fill were recorded and in Well 22B battery casings were reported mixed with silty sand from 15 to 24 feet. Clay was encountered in a number of boreholes at depths from 6-15 feet, being more common under the northern part of the site, at Wells 1A, 2, 4, 5, 6, 7, 8, 9, 10, 11A, 12, 14, 17, and 20, but absent at Wells 18, 22B, 23, 24, and 25B (see Fig. 3 and Appendix A Part II). The clay is gray to bluish gray in color and contains organic material. It was probably laid down in a lake, or lakes, which were common in the Green River valley (Mullineaux, 1970), and varies in thickness from one to four feet. The commonest materials encountered in boreholes were fine sand, light brown or grayish brown, and silt, gray to grayish brown, often mixed with some clay. The water table was found at very shallow depths, ranging from 3 to 12 feet and averaging 6 feet from the surface. At Well 19, which was installed in a depression north of S. 196th Street the water flowed out at the surface. Water level measurements taken on November 15, 1982 (Table 1) suggest that the relatively permeable material at the surface within the facility and the lack of vegetation have resulted in a higher rate of percolation of rain into the ground than in surrounding areas. This appears to have created a groundwater "high" or mound under Western Processing (see figs. 4 & 5). Although the predominant flow directions of groundwater are west and north to Mill Creek, the mound would cause flow to the east and even south within the site for a short distance as well. The flow at Well 19 is probably a response to this local increase in hydraulic head under a confining clay layer. There are higher hydraulic heads in the shallow wells of adjacent pairs such as 11A, 11B and 17A, 17B (Table 1). This indicates that the groundwater mound has created a hydraulic head which is driving groundwater down into the aquifer at least to levels below 30 feet, since flow is always from higher hydraulic head to lower. A berm along the east side of Western Processing now mostly prevents surface runoff in that direction. Surface runoff from the site was observed during the site investigation going west to Mill Creek or out of the front gate and down into a depression outside the north east corner of the site. Figure 3 TABLE 1 WATER TABLE ELEVATIONS NOVEMBER 1982 AND MAY 1983 | Observation Well | Water Table Elevations
(Feet Above Mean Sea Level | | | |------------------|--|----------------|--| | Number | November 1982 | May 1983 | | | 1A (shallow) | 13.55 | 15.19 | | | 1B (deep) | 12.86 | 14.40 | | | | 14.37 | 15.65 | | | 2
3
4 | 18.35 | 19.41 | | | 4 | 12.37 | 13.76 | | | 5 | 15.17 | 16.62 | | | 5
6
7 | 14.19 | 15.79 | | | 7 | 14.59 | 16.26 | | | 8 | 13.39 | 15.28 | | | 9 | 11.35 | 12.21 | | | 10 | 12.09 | 12.50 | | | 11A (shallow) | 14.83 | 16.53 | | | 11B (deep) | 12.94 | 14.97 | | | 12 | 14.10 | 15.72 | | | 13 | 11.91 | 13.70 | | | 14 | Cap Rusted On | | | | 15 | 15.29 | 17.24 | | | 16 | 13.73 | 13.69 | | | 17A (shallow | 16.39 | 18.20 | | | 17B (deep) | 12.72 | 14.57 | | | 18 | 15.86 | 18.25 | | | 19 | 14.35 | | | | 20 | 15.88 | 17.23 | | | 21 | 12.80 | 15.24 | | | 22A (shallow) | 13.90 | 15.68 | | | 22B (deep) | 13.77 | 14.72 | | | 23
24 | 14.05
13.34 | 16.30 | | | | 13.34 | 16.17 | | | 25A (shallow) | 13.85 | 16.03 | | | 25B (deep)
26 | 14.48 | 15.89
16.13 | | | 27 | 14.48 | 15.13 | | | 28 | 14.51 | 12.46 | | | 29 | | 15.01 | | | 23 | | 13.01 | | Figure 4 Figure 5 The toxic nature of many of the materials handled by Western Processing required the development of a safety plan prior to any on-site work. An ambient air characterization of the site was performed on September 23, and September 27, 1982, to determine what respiratory hazards might be present. On September 23, the field team members entered the site wearing self contained breathing apparatus and measured the air quality at 26 sites (see Fig. 6), using a Century Systems Organic Vapor Analyzer (OVA), Model 128, and a Photoionizer, HNU Model PI 101. Station 17 showed 4-5 ppm, the only site above a background level of 1 ppm. Shallow holes were dug by hand at a number of locations to see if disturbed soil released volatile organics. Stations 3, 11, 17 and 20 showed relatively high levels of organics, so soil samples were taken from these locations to determine what substances were present. The soil samples from Stations 17 and 20 showed detectible but not quantifiable levels of several volatile organic solvents. On September 27, the field team returned to the site to install High Vol samplers with activated charcoal tubes. Four were installed on-site at Stations 3, 11, 17 and 20 and two off-site at Stations 27 and 29 in an attempt to collect organic vapor from the normal breathing zone. Sampling was for a period of four hours only. None of these tubes showed detectible levels of organics when analyzed at the laboratory of Ecology and Environment, Inc., Buffalo, New York. On the basis of the soils data, and because of the presence of barrels and tanks of waste on-site, it was decided that all personnel would wear air purifying respirators with combination particulate and organic vapor cartridges when working on site. As part of the safety precautions it was required that the breathing zone around any hole being dug by drill or backhoe be monitored at all times with the OVA or photoionizer. personnel leaving the site were decontaminated with steam cleaner and detergent solution. All equipment entering or leaving the site was steam cleaned. Wash water from these decontamination operations were collected into 55-gallon Department of Transporation approved drums. After analysis they were removed to an approved waste disposal site. Figure 6 5.1 Well Installation and Soil Sampling As a result of the EPA and METRO surveys and an on-site inspection, the EPA began site investigation. Sampling sites were proposed on the basis of the known site history and from review of archival imagery, that is, aerial photographs dating from 1960 through 1980. A number of wells were installed around the perimeter, and a number of two level wells (Stations 1, 11, 17, 22), were put in a line down the center of the site to investigate changes in hydraulic head with depth. Remaining locations were selected as being on the site of former lagoons, waste piles, spills, etc., or between such sites and the probable receiving waters to north, west and east of the site (see Fig. 2). The EPA was initially informed that the site had been raised with demolition debris and that they must be prepared to find concrete, brick, reinforcing bars, etc. below the surface. It was proposed, therefore, to use a backhoe to dig through the fill, an excavation method that could handle such material and also expose the depth and type of fill. Holes deeper than the reach of the backhoe were to be drilled with a cable tool rig. The first two holes, at Wells 1 and at Well 11, were dug with the backhoe but exposed no demolition debris. Instead, sand and silt were common. At Station 11 the level of volatile organics in the air around the backhoe pit was measured at greater than 1000 ppm. For this reason and because the site owner claimed that the backhoe pits were creating a hazard for his employees, it was decided to sample soil and install wells with the cable tool only. Later it was decided to bring a soil sampling drill rig on-site to sample soil with a small diameter (3") solid stem auger, and to install well points in the holes. The initial holes were dug and wells installed in the first week of October. The soil sampling rig was brought on-site October 12. On-site drilling was completed by October 26. Because of the methods used,
none of the soil samples is of undisturbed material. Contamination from levels other than that being excavated was minimized by carefully cleaning up the hole before sampling, in the case of the backhoe and auger, and by driving down steel casing behind the bit to shut off the upper part of the hole when the well was being constructed using the cable tool rig. Samples taken with the cable tool from below the water table were scraped off the bit. For a summary of soil samples taken from well locations see Table 2. Each soil sample was collected into two 8-oz. wide mouth glass jars with teflon-lined lids. The soil was scooped with a gloved hand into the bottles. Between each sampling an outer disposable vinyl glove was discarded and an inner butyl rubber glove washed in clean water, brought onto the site by the field team. Nine samples were also collected with a hand auger, on October 25, along the east side of the site. Seven came from between one and two feet below the surface of a berm of material scraped off Western Processing's yard and heaped up along its east side to prevent run-off in- Figure 7 TABLE 2 SUMMARY OF SOIL SAMPLING LOCATIONS | Well | Method of | Method of | Depth to Well | Dept | hs a | t wh | ch | samp | es w | ere c | ollec | ted (1 | +.) | |--------|------------|------------|---------------|------|------|------|----|------|------|-------|-------|--------|-----| | Number | Drilling | Sampling | Point (ft.) | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | | IA | backhoe | backhoe | 12 | × | × | × | × | | | | | | | | IB | cable tool | | 30 | ^ | ^ | ^ | ^ | | | | | | | | | auger | auger | 12 | × | × | × | × | × | | | | | | | 2 3 | auger | auger | 12 | × | × | × | ^ | ^ | | | | | | | 4 | auger | auger | 15 | × | × | × | 5 | auger | auger | 12 | × | × | × | × | | | | | | | | 6 | auger | auger | 12 | × | × | × | × | | | | | | | | 7. | auger | auger | 12 | × | × | × | | | | | | | | | 8 | cable tool | auger | 16 | × | × | × | | | | | | | | | 9 | auger | auger | 15 | × | × | × | × | 10 | auger | auger | 15 | × | × | × | × | × | | | | | | | IIA | backhoe | backhoe | 12 | × | × | ×* | × | | | | | | | | IIB | cable tool | | 29 | | | | | | | | | | | | 12 | auger | auger | 11 | × | × | × | × | × | | | | | | | 13 | auger | auger | 9 | × | × | × | | | | | | | | | 14 | | | 1.5 | | | | | | | | | | | | | auger | auger | 15 | × | × | × | × | × | | | | | | | 15 | cable tool | auger | 16 | × | × | × | | | | | | | | | 16 | auger | auger | 15 | × | × | × | × | × | | | | | | | 17A | cable tool | cable tool | 15 | X | × | × | X | × | | | | | | | 17B | cable tool | cable tool | 30 | | | | | | × | × | × | × | X | | 18 | cable tool | auger | 16 | × | × | × | | | | | | | | | 19 | auger | auger | 6 | × | × | × | - | | | | | | | | 20 | auger | auger | 15 | × | × | × | × | | | | | | | | 21 | auger | | 15 | | | | | × | | | | | | | 22A | | auger | 15 | × | × | × | × | × | | | | | | | 221 | cable tool | cable tool | 10 | × . | × | × | × | × | | | | | | | 22B | cable tool | | 27 | | | | | | | | | | | | 23 | cable tool | auger | 15 | × | × | × | | | | | | | | | 24 | auger | auger | 15 | × | × | × | × | × | | | | | | | 25A | cable tool | auger | 16 | × | × | × | ^ | ^ | | | | | | | 25B | cable tool | | 26 | 7 | | ~ | 26 | cable tool | auger | 16 | × | × | × | | | | | | | | | 27 | auger | auger | | × | × | | | | | | | | | | 28 | auger | auger | 12 | × | × | × | | | | | | | | | 29 | auger | auger | 12 | × | × | × | | | | | | | | | 30 | auger | auger | 12 | | | | | 1 | | | | | | ^{*} Samples collected at 8 ft. and 10 ft. ⁻⁻⁻⁻ No sample collected since soils were documented in adjacent hole. to a ditch outside the east fence. The remaining two samples came from within the ditch at the north end of the site where a pipe protrudes through the berm and boundary fence and where the material in the ditch is stained as if by spilled material (see Fig. 7). These were handled in the same manner as the other soil samples. Eleven samples of surface soil were collected November 18, from what appeared to be spill sites (see Fig. 7). These were scraped up with the sample container and pushed into the bottle with the teflonlined lid. The outside of all sample containers were washed before being packed. Backhoe and cable tool holes had 4-inch PVC casing and slotted screen set in them, the screen was surrounded with gravel pack of pea gravel and a mixture of bentonite and sand placed around the casing to provide a seal up to the surface (see Appendix A Part II). The 3-inch holes drilled with the solid stem auger had stainless steel well points on 2-inch black iron pipe driven down into them. Both wells and well points then had a 6-inch steel casing cemented in around the top of the well and capped with a padlocked steel cap. All wells were surged and bailed or pumped to yield relatively sediment free water as part of well completion. The depth from which water samples were taken depends, of course, on the depth at which the well screen is set (see Appendix A Part II). #### 5.2 Groundwater Sampling After all monitoring wells had been installed and water levels measured, all of them were pumped with a Robb Air Pump until either three times the volume of water standing in the casing had been discharged or the well was dry. The first three wells pumped, Nos. 2, 13, and 19 were pumped onto the ground. Later the water pumped from wells was collected into drums and stored with the wash water from the decontamination station. To reduce cross contamination to a minimum the pump and its discharge line were submerged in potable water from the City of Kent fire hydrant and run for five minutes between each well. Each well was allowed to recharge and then sampled with a stainless steel bailer which had been washed with distilled water and rinsed with reagent grade acetone and then with pure methanol followed by distilled water again. The bailer was then allowed to dry. The bailer was lowered into each well on a monofilament line. A new line was used for each well. On-site wells were sampled from November 1, 1982 to November 12, 1982. Off- site wells were sampled on November 15, 1982. The bailer's and sampler's gloves were rinsed twice with the water being sampled and then the sample containers were rinsed. Each prelabeled container was then filled and its outside washed off with potable water before it was placed in an ice chest. Two half-gallon brown glass bottles with teflon-lined lids were collected for extractible organics analyses, two 40-ml glass vials with teflon-lined lids for volatile organics and two 1000-ml polyethylene containers for heavy metals and for cyanide analyses. An additional 500-ml polyethylene container was filled to be checked for total dissolved solids and chloride (Table 3). At the time of sampling the conductivity and pH of the water was checked (see Table 4). #### 5.3 Wash Water and Waste Water Samples Water used at the decontamination station and from well pumping was collected into recycled steel drums as noted above. At the end of each week a composite sample of water was taken with new glass tubing. Two 1/2-gallon brown glass bottles with teflon-lined lids and two 1000-ml polyethylene containers with teflon-lined lids were filled. #### 5.4 Chemical Analysis All but the total dissolved solids/chloride samples from ground-water and wash water/waste water samples were sent to contract laboratories. California Analytical Laboratories, Sacramento, California, analyzed inorganics samples, and Mead CompuChem, Research Triangle Park, North Carolina, analyzed organics. All soil and groundwater samples were analyzed for the heavy metals, acid extractible organics, base/neutral extractible organics and volatile organics on the priority pollutant list (see Appendix A Part I). All wash water/waste water samples were sent to the EPA Region X Laboratory in Manchester, Washington, to be analyzed for arsenic, mercury, cadmium, nickel, lead, zinc and for polychlorinated biphenyls (PCBs) and benzo[a]pyrene. These parameters were required by METRO as a precondition for discharge to the sanitary sewer. The water was found to be too highly contaminated for this, however. For the organic priority pollutants the laboratory used analytical methods 601-613 (Federal Register, vol. 44, p. 34408, June 14, 1979). For the metals the laboratory used atomic adsorption (AA) spectroscopic or inductively coupled plasma optical emission spectroscopic methods (Federal Register, vol. 41, p. 52780, December 1, 1976). Levels of detection are established by the contract between EPA and the laboratories, (EPA contract 68-01-6608). It should be noted that groundwater samples to be analyzed for inorganics by these standard methods are iced, and filtered at the laboratory before being analyzed. In this way only dissolved metals are measured. Groundwater for organics analysis is not filtered at the laboratory. Instead it is extracted with organic solvent, and the solvent extract is analyzed. This process will tend to strip any organics adsorbed on any sediments particles present. Filtering before extraction would particularly tend to remove non-polar compounds which adsorb on sediment. #### 5.5 Sample Documentation and Handling Prior to sampling the field team obtained station numbers from the EPA data storage and retrieval computer system (STORET) (Appendix D, Part II). The Sample Management Office of Viar and Co., Arlington, Virgina, assigned laboratories (see Section 5.4), and these assigned case numbers and laboratory numbers to the samples. The EPA Region X Laboratory also assigns laboratory numbers for samples sent there. TABLE 3 C1 AND TDS RESULTS | We1 | 1# | Depth | Lab # | C1(mg/1) | TDS (mg/1) | |------|-----------|---------|-------|----------|------------| | 01 | Water | Shallow | 45150 | 101 | 1232 | | 01 | Water | Deep |
45151 | 77 | 563 | | 02 | Water | Shallow | 44154 | 224 | 2146 | | 03 | Water | Shallow | 46153 | 1500 | 19832 | | 04 | Water | Shallow | 44155 | 127 | 1716 | | 05 | Water | Shallow | 44156 | 1737 | 20356 | | 06 | Water | Shallow | 44157 | 599 | 6300 | | 07 | Water | Shallow | 44158 | 388 | 2574 | | 08 | Water | Shallow | 45152 | 136 | 3288 | | 09 | Water | Shallow | 44160 | 1899 | 10828 | | 10 | Water | Shallow | 44161 | 5968 | 33074 | | 11 | Water | Shallow | 45153 | 1508 | 12580 | | 11 | Water | Deep | 45154 | 1819 | 14650 | | 12 | Water | Shallow | 44159 | 150 | 1952 | | 13 | Water | Shallow | 44150 | 49 | 568 | | 14 | Water | Shallow | 44163 | 2553 | 19852 | | 15 | Water | Shallow | 45164 | 1670 | 9406 | | 16 | Water | Shallow | 44164 | 1144 | 14712 | | 17 | Water | Shallow | 45155 | 3394 | 19652 | | 17 | Water | Deep | 45156 | 782 | 4636 | | 18 | Water | Shallow | 45163 | 386 | 2254 | | 19 | Water | Shallow | 44151 | 205 | 1782 | | 20 | Water | Shallow | 44165 | 739 | 3340 | | 21 | Water | Shallow | 44166 | 1202 | 4626 | | 22 | Water | Shallow | 45157 | 396 | 2062 | | 22 | Water | Deep | 45158 | 2202 | 6128 | | 23 | Water | Shallow | 45162 | 590 | 3456 | | 24 | Water | Shallow | 44167 | 11 | 652 | | 25 | Water | Shallow | 45159 | 303 | 1170 | | 25 | Water | Deep | 45160 | 34 | 280 | | 26 | Water | Shallow | 45161 | 814 | 2026 | | 27 | Water | Shallow | 46150 | 768 | 3544 | | 28 | Water | Shallow | 46151 | 5447 | 18564 | | 29 | Water | Shallow | 46152 | 2548 | 10780 | | 30 | Water | Shallow | 51150 | 5 | 144 | | Tran | nsfer Bla | nk | 44152 | 1 u | 5 | | Tran | sport B1 | ank | 44153 | ī u | 8 | Shallow = 6-16' Deep = 26-30' u = less than limit of detection TABLE 4 CONDUCTIVITY AND PH READINGS | 200 | Well # | | рН | Conductivity
(Micromhos) | |-----|--------|----------|---------|-----------------------------| | | 1A (| shallow) | 6.70 | 2000 | | | | deep) | 7.55 | 1400 | | | 2 | deep) | 6.58 | 35.5 | | | 2 3 | | 13.00 | >7500 | | | 4 | | | 1700 | | | | | 6.68 | | | | 5 | | 9.36 | >7500 | | | 6 | | 7.50 | >7500 | | | 7 | | No Data | No Data | | | 8 | | No Data | No Data | | | 9 | | 6.80 | 4800 | | | 10 | | 4.58 | >7500 | | | 11A (| shallow) | 4.84 | 5500 | | | 11B (| deep) | 4.79 | >7500 | | | 12 | | No Data | No Data | | | 13* | | 6.42 | No Data | | | 14 | | 5.15 | >7500 | | | 15 | | No Data | No Data | | | 16 | | 5.61 | >7500 | | | | shallow) | 6.26 | 1100 | | | | deep) | 5.02 | 4000 | | | 18 | чесь) | No Data | No Data | | | 19* | | 6.30 | No Data | | | 20 | | 7.53 | 3300 | | | 21 | | | | | | | ab alla) | No Data | No Data | | | | shallow) | 6.55 | 420 | | | | deep) | 5.96 | 4500 | | | 23 | | 6.79 | 4500 | | | 24 | | No Data | No Data | | | | shallow) | 6.47 | 1600 | | | | deep) | 6.68 | 300 | | | 26 | | 6.33 | 1700 | ^{*}Off-site wells. shallow well (12-16') deep well (28-30') Sampling procedures at the site were documented in a field log book. All containers were labelled and tagged. Samples going to the contract laboratories were accompanied by an Organic Traffic Report form or Inorganic Traffic Report form, and a copy of the Chain of Custody Record. Samples going to the Region X Laboratory were accompanied by an Analysis Required form, a Field Data Sheet and a Chain of Custody form. A summary of sample documentation is included in Appendix D Part II. All containers were sealed with fiber tape; the outsides of liquid filled bottles were marked with grease pencil to indicate the level of liquid originally in the bottle. Sample containers going to the contract laboratory were packed in vermiculite inside a 4-mil polyethylene bag. This bag in turn was packed in an outer bag containing ice. The bags were placed inside ice chests that were sealed with fiber tape and custody tape. Packaging met the requirements of the National Enforcement Investigation Center (NEIC, 1980). Sample containers going to the EPA Region X Laboratory were placed in ice in plastic bags and packed in cardboard boxes sealed with fiber tape and custody tape. Ice chests were shipped via Federal Express, Inc., other samples were shipped via Kitsap Delivery Service, Inc. All samples remained in the custody of the Field Investigation Team (FIT) of Ecology and Environment, Inc., until delivered to the respective shippers. #### 5.6 Quality Assurance Program All sample containers were prepared under contract to the EPA by Ecology and Environment, Inc., 195 Sugg Road, Buffalo, New York. As a check on the containers and field procedures used to collect ground-water samples, distilled water filtered through activated charcoal was used to make up "transport" and "transfer" blanks of "organic-free water." A transport blank is one filled at the EPA laboratory, taken into the field and shipped to the contract laboratory. A transfer blank is one filled at the EPA laboratory, taken into the field and then transferred with a clean stainless steel bailer into clean sample containers which are then shipped to the contract laboratory. In addition, two clean 8-oz. wide mouth glass jars of the type used to collect soil samples were shipped to each of the contract laboratories to be rinsed with purified water so that the rinsate could be analyzed. Samples of the water used by the driller in drilling cable tool holes and of the pea gravel used to gravel pack the wells were also submitted for analysis. All data from the contract laboratories were reviewed by the FIT for completeness and checked for correct procedures, instrument performance (gc/ms calibration), and recoveries (surrogate and matrix spike). Standard run checks and method blanks were checked against sample results and sample retention times; mass spectral data were reviewed. Checks on the calculations of the quantities of the various priority pollutants were made especially in the case where high values were re- ported. All of the information was documented on forms provided by the EPA Region X Laboratory (Appendix E Part II). Estimates of the quantities of the tentatively identified compounds (Appendix B Part II), were made by the FIT chemist, as quantification of these compounds is not required under the contract specifications of the contract laboratories. #### 6.1 Introduction Because of the number of samples (170, with blanks), and the large number of parameters checked, it is impossible within the scope of this report to discuss them all. Selected samples, generally those most contaminated, are discussed, together with the blanks and the background well (Well 30). The transport blank, which was supposedly organic-free water and went unopened from the EPA laboratory to the contract laboratory, shows four volatile organics at trace concentrations (<5 to 20 ug/1), and trichloroethene at 76 ug/l. These could have been in the water or from the container. The transfer blank, which consisted of the same water run through the bailer into a fresh container, showed no volatiles, but picked up 140 ug/l of zinc. It seems likely that the volatiles were in the water but that the zinc came off the bailer. For this reason, as a precaution, only levels of zinc above 700 ug/l will be regarded as clear indication of contamination in water. The rinsate from empty soil sample bottles showed insignificant levels of some metals, but had 88 ug/l of methylene chloride. Although this may be from the laboratory rather than the container, levels of methylene chloride in a soil sample of less than 500 ug/kg will be considered questionable evidence of contamination. In general, contaminants in groundwater or soil found at levels less than five times these found in the appropriate blank are regarded as suspect and are shown in parentheses on the tables. The pea gravel used by the driller in well construction showed traces of some metals and cyanide, but the potential impact on ground-water from the wells is negligable. The City of Kent water used by the driller was sampled and shows low levels of impurities. Only methylene chloride was significant (56 ug/l), and again may have come from the laboratory, but levels of methylene chloride of less than 250 ug/l should be regarded as suspect, where found in groundwater. Conductivity and pH of groundwater can be useful measures of inorganic ions in the water and of the presence of acids or alkalies. These parameters were monitored for most of the on-site wells while they were being sampled (Table 4). For conductivity the numbers range from 35 to >7500 micromhos. Uncontaminated groundwater at Lakewood, Washington, for comparison, ranged from 130-290 micromhos and any figure over 1000 would indicate pollution. The pH values ranged from 5.02 to 13.00, with the later being classifiable as a corrosive waste by RCRA criteria (cf. Federal Register, Vo. 45, No. 98, p. 33122, May 18, 1980). Because of questions raised about organics, mainly the pesticide and base/neutral extractibles groups, being carried by sediment into groundwater samples, particular note should be taken of water samples from those wells installed where the soils were heavily contaminated with these organics. The water in these wells show very low or no levels of these compounds and is evidently largely free of contaminated sediment. #### 6.2 Summary of Results Because of the high levels of contamination encountered, generally only those instances where the soil exceeded 1000 mg/kg (ppm) dry weight of inorganics, or 1000 ug/kg (ppb) of organics are discussed. For the same reason only levels above 1000 ug/l of organics or inorganics in groundwater will be referred to, except when comparison with blanks or the background well (Well 30) is called for. These levels have no regulatory significance, but are used as indicators of gross contamination. In all, 87 priority pollutants were detected on or close to the site, 67 of them in quantifiable levels. Twelve other hazardous materials were noted, 11 at quantifiable levels. Twenty-one of those compounds are considered carcingens and 28 are considered suspected
carcingens. One or more inorganic priority pollutant exceededs 1000ppm in soil in 59 out of 130 samples (45%) and exceeded 1000 ug/l in groundwater in 28 out of 35 wells (80%). The percentage of samples in which organic priority pollutants exceeded 1000 ug/l in water or 1000 ug/kg in soil are 67.6% and 38.5%, respectively. Twenty out of 29 shallow wells and three out of five deep wells had one or more organic priority pollutants exceeding 1000 ug/l and nine out of 20 surface soil samples and 41 out of 110 borehole soil samples had one or more priority pollutants exceeding 1000 ug/kg. Nineteen soil samples were classifiable as hazardous waste by RCRA definition, as were seven groundwater samples. Contaminant loading in soil and water both on-site and downgradient from it showed marked contamination in every case, ranging up to soil containing levels of priority pollutant metals of 9% and more. It is clear that there has been widespread spillage, or leaking, or dumping of organic chemicals at this site, including material containing at least 36 priority pollutants in relatively high levels. There is no doubt that the Western Processing site has created serious soil and groundwater contamination, and is contributing to air and surface water contamination. #### 6.3 Inorganics The total dissolved solids (TDS) and chloride results (Table 3) are a good general index of pollution. When compared to Well 30 as background, all the on-site or near site wells are at least twice as high in chloride and TDS and range up to 1000 times greater in chloride at Wells 10 and 28 and over 100 times greater in TDS in Wells 3, 5, 10, 11, 14, 16, 17 and 28. Of the inorganics measured, aluminum, iron, manganese and boron are relatively common elements. Water from 21 wells exceeded 10,000 ug/l in one or more of these pollutants and ranged up to 510,000 ug/l, compared to levels of undetected (<200), 4600, 1200 and 1200 ug/l of these elements in the background well, Well 30 (Appendix B Part II). Of the priority pollutant metals (Appendix A Part I) zinc is the most common. Twenty-one water samples exceeded 1000 ug/l, ranging up to 510,000 ug/l in Wells 18 and 28. For comparison Well 30 had 32 ug/l. Thirty-three soil samples exceeded 1000 mg/kg ranging up to 81,000 mg/kg in surface soil sample No. 5. It seems clear that zinc has been leaching out of the soil into the groundwater. Other notably elevated metals analyses were: chromium in six wells, with levels up to 65,000 ug/l (in Well 14), copper in eight wells, with a high of 13,000 ug/l (in Well 5), nickel in eleven wells, with a high of 280,000 ug/l (in Well 10). Background levels are, undetected, undetected, and 210 ug/l respectively, (in Well 30). The two most toxic metals, after mercury, which does not appear to be a problem at this site, are cadmium and lead. These exceed 1000 ug/l in seven wells with lead at 3300 ug/l in Well 3 and cadmium at 60,000 ug/l in Well 10. For comparison the background well (Well 30), showed <1 ug/l cadmium and 21 ug/l lead. Lead in the soil exceeds 1000 mg/kg in 19 samples ranging up to 141,000 mg/kg near surface in Well 16. Cadmium in soils nowhere exceeds 420 mg/kg, but compared to lead a higher proportion of it seems to have leached into groundwater. Cyanide was found at 35,000 ug/l in Well 5 but was not a wide-spread contaminant at high levels. Background level was undetected, in Well 30. EP Toxicity tests were performed on the most highly contaminated soils samples (Federal Register, Vol. 45, No. 98, p. 33127, May 18, 1980). This test measures the amount of toxic substance, in this case metal, that will leach out of a specific weight of waste under given conditons. Waste failing the test are hazardous wastes by definition under RCRA. Nineteen soil samples failed the test (Table 5), in six cases groundwater also failed this test. Lead was extracted from one sample at a level 154 times the maximum permitted for waste to be classified non-hazardous. Samples containing chromium were checked for hexavalent chrome, the more toxic form of the metal, but none was found. No sample tested was a hazardous waste by reason of chrome content alone, however. #### 6.4 Organics Twenty-nine of the organic priority pollutants exceeded 1000 ug/kg (ppb) in soils or 1000 ug/l in water. Sixty-nine samples from 31 sites are affected. In the "pesticide" group four different polychlorinated biphenyls (PCBs) were noted in one or more samples, but in other samples the PCBs were grouped as one analysis. Since these compounds adhere strongly to soils it is not suprising that they were not detected in groundwater. In all, 13 soil samples from six well sites, two samples from the berm and two surface soils show high PCB values, the highest being the sample from six to nine feet at Well 15 (19,600 ug/kg). TABLE 5 EP TOXICITY TEST RESULTS (ug/1)† | | | METALS | | |--|---|--|---| |
Station | Chromium* | Cadmium* | Lead* | | Soils | | | | | Well 3 (6') Well 3 (12') Well 10 (6') Well 15 (9') | | 1,600
1,200
1,400
1,200 | | | Well 16 (3') Well 16 (6') Well 16 (9') Well 20 (3') Well 21 (3') Well 21 (6') Well 23 (6') | 9,500 | 4,200
9,600
1,300 | 770,000
19,000
6,100
27,000
11,000 | | Berm 3
Berm 7 | | | 8,100
6,800 | | Surface 3 Surface 4 Surface 5 Surface 6 Surface 7 Surface 12 | | 12,000 | 19,000
7,000
18,000
350,000
220,000
35,000 | | Water Samples | | | | | Well 10 (15') Well 11 (15') Well 11 (30') Well 14 (15') Well 17 (15') Well 28 (15') | 17,000

65,000
32,000
6,100 | 60,000
4,800
3,900
12,000
4,500
5,600 | | $^{^{\}dagger}$ Concentration of soluble metal in the test extract ^{*}Standard for Chromium = 5,000 ug/l Standard for Cadmium = 1,000 ug/l Standard for Lead = 5,000 ug/l In one soil sample (Well 6, 0-3ft) aldrin and dieldrin were found (2,860 ug/kg and 3340 ug/kg respectively). This is the only sample containing markedly elevated pesticide levels. Of the base/neutral extractibles 16 were noted at levels greater than 1000 ug/kg (1 ppm). All 18 samples affected were soils, the most contaminated of which was surface soil sample #8 with approximately 5.1% by weight of priority pollutants, including 2.0% of phenanthrene and 1.6% pyrene. The sample results in excess of 1000ug/kg (1ppm) are listed in Table 6. TABLE 6 - BASE/NEUTRAL EXTRACTIBLES (>1ppm) | | Number of | Highest | |-------------------------|-----------|-------------| | Compound | Samples | Value Found | | Acenaphthene | 3 | 5090 ppm | | Hexachloroethane | 1 | 1.8 ppm | | Phthalates (as a group) | 14 | 860 ppm | | Benzo-[a]-anthracene | 1 | 200 ppm | | Fluoranthene | 7 | 234 ppm | | Naphthalene | 3 | 5.2 ppm | | Benzo-k-fluoranthene | 1 | 130 ppm | | Chrysene | 4 | 1210 ppm | | Anthracene | 1 | 1.6 ppm | | Fluorene | 4 | 8600 ppm | | Phenanthrene | 9 | 20,000 ppm | | Pyrene | 8 | 16,000 ppm | The acid extractibles are all phenolics and of these six were found at levels above 1000 ug/l or 1000 ug/kg. The most important compound was phenol itself which was found in 12 wells and 13 soil samples. The highest concentration was in Well 27 which had a suprising 4,100,000 ug/l. Of the soil samples the most contaminated, (12-15 feet, Well 22), contained 65,000 ug/kg. To summarize the highest levels of phenolics: pentachlorophenol was found in two soil samples including a surface sample with 17,000 ug/kg; 2,4-dichlorophenol was found in five soil samples, the highest level found being 7900 ug/kg between three to six feet in Well 10; 2,4-d-methylphenol was in two wells, the higher level being 1100 ug/l in Well 12, and in six soil samples including a surface soil containing 11,000 ug/kg; 2-nitrophenol was found off-site in Well 27 in the extraordinary concentration of 1,300 mg/l; and lastly, 4-nitrophenol was found in Well 15 at 3200 ug/l. After the base/neutral extractibles, the volatiles group is the most heavily represented. Nine different priority pollutants occur at levels greater than 1000 ug/l or 1000 ug/kg. The highest level of any volatile found was 720,000 ug/l of methylene chloride in Well 15. Methylene chloride is also found at high levels in 12 other wells and nine soil samples. Trichloroethene is even more widespread, being found in 18 wells and eight soil samples. The most contaminated well is Well 15 again, with 210,000 ug/l. The most contaminated soil is also from Well 15 at three to six feet (580,000 ug/kg). Toluene is found in water fromseven wells within the range of 1000-22,000 ug/l with the highest level in Well 17. Of the six soils samples in the >1000 ug/kg range the highest is also from Well 17 at three to six feet, and registered 394,000 ug/kg. Chloroform is found in that same sample (Well 17, 3-6 feet), at 18,000 ug/kg, and in five groundwater samples, with the highest reaching 27,000 ug/l (Well 15). This well has the highest level for 1,1,1-trichloroethane at 340,000 ug/l while three others have high values also. Not suprisingly, of two soil samples contaminated with the same compound the higher is from Well 15 at three to six feet, (174,000 ug/kg). 1,1-dichloroethane is found at high levels only in two water samples, the higher again being from Well 15 (33,000 ug/l). Trans-1,2-dichloroethene is also found at high levels only in water. Of five wells affected the highest is Well 21 (390,000 ug/l). Lastly, ethylbenzene is found at significant concentrations in three soil samples, the worst being from Well 17 at three to six feet (37,000 ug/kg). Besides these priority pollutants, which were selected as indicators of industrial pollution as the result of a consent agreement requiring the EPA to create a list of the most common such materials, there are many other hazardous substances. Twelve of
these materials, acetone, benzoic acid, benzyl alcohol, 2-butanone, dibenzofuran, 2-hexanone, 2-methyl napththalene, 2-methylphenol, 4-methylphenol, styrene, 2,4,5-trichlorophenol and o-xylene, were noted; one or more occuring in 69 soil samples and 23 groundwater samples (Appendix B Part I). For example, acetone occurs in soil in levels up to 17,000 ug/kg (Well 17), and in groundwater in the same well is found at 130,000 ug/l. 2-butanone is also found in the soil in Well 17, at up to 580,000 ug/kg, and in the water at 460,000 ug/l. Numerous other compounds were identified with varying degrees of assurance, and their levels estimated by the FIT (see Tentatively Identified Compounds, Appendix B Part For example, 2-oxazolidinone, 2-(2hydroxypropyl)-5-methyl occurs quite commonly, reaching a level of 60,000 ug/kg (Well 9, soil, 6-9 feet). #### 6.5 Carcinogens A number of known and suspected carcinogens were detected on and around the Western Processing site. The 21 known carcinogens found are listed on Table 7. The 28 suspected carcinogens, including two not on the priority pollutant list, are listed on Table 8. #### 6.6 Total Contaminant Levels To give a better idea of the overall impact of the site, tables were constructed showing the total load of contaminants in selected water and soil samples. Analyses from six on-site wells, one background well, (Well 30), and one downgradient well, (Well 28, Fig. 3), ## TABLE 7 KNOWN CARCINOGENS* ON EPA PRIORITY POLLUTANT LIST | Pollutants Found On-Site | Pollutants Not Found On-Site | |---|---| | Arsenic Benzene Benzo(a)anthracene Benzo(b)fluoranthene | Acrylonitrile Benzidine Bis (Chloromethyl) Ether N-Nitrosodimethylamine | | Benzo(a)pyrene | N-Nitrosodi-N-Propylmine | | Beryllium | TCDD | | Cadmium | Toxaphene | | Carbon Tetrachloride | | | Chloroform | | | Chromium | | | 1,2-Dichloroethane | | | Gamma BHC (Lindane) | | | Nickel | | | PCB-1016 | | | PCB-1221 | | | PCB-1232 | | | PCB-1242 | | | PCB-1248 | | | PCB-1254 | | | | | | PCB-1260
Vinyl Chloride | | ^{*}National Toxicology Program # TABLE 8 SUSPECTED CARCINOGENS* ON EPA PRIORITY POLLUTANT LIST #### Pollutants Found On-Site #### Pollutants Not Found On-Site Acenaphthene Acenaphthylene Anthracene Benzo(k)fluoranthene Benzo(ghi)perylene Bis(2-Chloroethyl)ether Chlorobenzene Chrysene 1,2,5,6-Dibenzathracene (Perylene) Dieldrin 4,6-Dinitro-O-Cresol Fluoranthene (Benzo(k)fluorene) Fluorene Heptachlor Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1,2,3-CD)pyrene Naphthalene N-Nitrosodiphenylamine Phenathrene Pyrene 1,1,2,2-Tetrachloroethane 2,4,6-Trichlorophenol 1,2-Trans-Dichloroethylene Non PP Hazardous Materials Alpha BHC Chlordane 2-Chloroethyl Vinyl Ether 2-Chloronaphthalene 3,3-Dichlorobenzidene Heptachlor Epoxide P-Chloro-N-Cresol Styrene Dibenzofuran (partial list) *Soderman, J. V. 1982 were tabulated (Table 9). Thirty-two priority pollutants were found in the on-site wells in measurable quantities. Twenty priority pollutants and five hazardous materials were found in the downgradient well, all of which were found on-site. Only four priority pollutants were found in significant levels in the background well. Total contaminant levels (both priority pollutant and others) are listed in Table 9, together with chloride, total dissolved solids and pH (where measured). Priority pollutants are usually measured in parts per billion in water samples. Some are thought to have effects on human health even at these levels in drinking water. Carcinogens are generally thought to have no threshold below which they have no effect. Of the on-site priority pollutants in Table 9 eight are considered carcinogens and four are suspected carcinogens. Total contaminants in the selected wells ranged from 53,323 ug/l to 1,359,982 ug/l (averaging 709,393 ug/l). The background well, in contrast, has a total contaminant load of 956 ug/l. Interestingly, the well most highly contaminated with priority pollutants is Well 27, outside the site. Because of the high levels of phenol and 2-nitrophenol the priority pollutant loading is 5,683,500 ug/l. The analytical data for the soil samples shows total contaminant levels even higher than for water, particularly in the case of the inorganics. Selected soil samples (Table 10) shows lead up to 8.4% in one sample, zinc up to 8.1%, and several organics above the 1% level. Total contaminant loads for these samples range from 0.02% to an astonishing 9.93%. The distribution of hazardous material in the soils and ground-water shows some interesting patterns. Priority pollutant metals in surface soils and average levels in borehole soils exceed 1000 ppm over most of the site (Fig. 8). Only at the northwest corner of the site around Wells 1, 2, 4, 6, 7, 8, 11 and 12, and at the south end of the site around Wells 24, 25 and 26 are lower levels encountered. This accords quite well with the distribution of total priority pollutant metals in shallow groundwater (Fig. 9). This is in excess of 100 mg/l off the northeast corner of the site in Wells 19 and 29, and in the middle of the site around Wells 10, 11, 14, 17, 18, 27 and 28. Levels are suprisingly low below the south part of the site and also in Well 16. The top 15 feet of soils in this well average an astonishing 4.6% lead, the highest in any well, but the lead level in the groundwater is only 470 ug/l. The sum of all the volatile priority pollutants in soils from each well suggests that there are at least two major spill locations onsite, at Wells 15 and 17 (Fig. 10). The distribution of volatiles in the groundwater suggests that there may well be several more spills, upstream of Wells 21, 27, and possibly 14, for example (Fig. 11). Non priority pollutant solvents show similar distribution with the exception of Well 15 (Fig. 12). TABLE 9 DATA SUMMARY FOR SELECTED WELLS * | Carcinogin
Code ** | Parameters | Well #5
(Shallow) | Well #15
(Shallow) | Well #17
(Shallow) | Well #17
(Deep) | Well #21
(Shallow) | Well #22
(Deep) | Well #28
(Shallow) | Well #30
(Shallow) | |-----------------------|---|----------------------|-----------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|-----------------------| | 3 | Dissolved Metals | (ug/1) | (ug/1) | (ug/I) | (ug/L) | (ug/1) | (ug/I) | (ug/I) | (ug/1) | | 0 0 | Chromium | 400 | 170 | 32,000 | 680 | 160 | 22 | 6,100 | | | 0 0 | Copper
Nickel | 13,000 | 3,400 | 7,200 26,000 | 3,200 | 320 | 280 | 77,000 | 210 | | | Zinc | (650) | (260) | 360,000 | 160,000 | (390) | (30,000) | 510,000 | (32) | | 0 0 | Arsenic
Antimony | 2 | - | - 32 | | _ | 32
26 | - 25 | - | | | Selenium | - | | - 0.07 | - 0.07 | - 0.00 | 4.1 | 2 1 | - 0.7 | | 0 0 | Mercury
Cadmium | 0.28 | (11) | 0.83
4,500 | (800) | 0.28 | 46
77) | 5,600 | 0.3 | | | Lead
Silver | 7 <u>-</u> | - | 1,600 | 210 | : | - | 6.5 | 21 | | | Miscellaneous | | | | | | | | | | | Cyanide | 35,000 | (1,200) | (92) | - | - | (36) | 920 | - | | | Acid Extractibles | | | | | | | | | | 0 | 2,4,6 Trichlorophenol | 8,800 | - | - | - | - | - | _ | - | | | 2,4 Dimethylphenol
2-Nitrophenol | 520 | | | 300 | 190 | - | | | | | 4-Nitrophenol | - | 3,200 | - | - | - | Ī., | - | - | | | Pentachlorophenol | 1,400 | - | | 700 | - 000 | - | 4,000 | - | | | Phenol
2,4 Dichlorophenol | 270,000 | 4,900 | 91,000 | 380 | 10,000 | - | 220 | - | | | Base-Neutrals | | | | | | | | | | | 1,2-Dichlorobenzene | - | 160 | - , | - | - | - | - | | | | Bis(2-Ethylhexyl) Phthalate
Isophorone | | - | 1 | - | - | - | 540 | 544 | | | Volatiles | | | | | | | | | | 0 0 | Benzene | 77 | | 2,200 | - | | | <u>-</u> | - | | 0 0 | 1,2-Dichloroethane | 2,900 | 16,000 | 1,700 | - | - | _ | 100 | - | | | 1,1-Dichloroethane | 320 | 33,000 | - | - | - | <u> </u> | - | - | | 0 0 | Chloroform
I,I Dichloroethene | 130
87 | 27,000 | 12,000 | 130 | - | 7,800 | - | - | | 0 | Trans-1,2-Dichloroethene | - | - | - | - | 390,000 | - | - | - | | | Ethylbenzene
Methylene Chloride | 23,000 | 720,000 | 42,000 | 1,200 | 100,000 | - | 5,400 | | | | Fluorotrichloromethane | - | - | 920 | - | - | - | - | - | | | Tetrachloroethene
Toluene | 4,100 | - | 22,000 | 430 | - | - | 50 | - | | | Trichloroethene | 16,000 | 210,000 | 42,000 | 830 | 170,000 | 17,000 | 840 | - | | 0 0 | Vinylchloride | - | • | - | | 360 | - | | • | | | Pesticides | | | | | | | | | | | Aldrin | _ | | _ | - | | - | 3.3 | - | | | Dieldrin
Heptachlor | : | : | - | - | - | - | 3.6
3.29 | - | | | Non-Priority Pollutant Hazardous | | | | | | | | | | | Wastes | | | | | 5,500 | _ | 8,000 | _ | | | 2-Methylphenol
4-Methylphenol | 980
3,000 | 320 | 64,000 | 320 | 4,900 | _ | 600 | - | | | 2,4,5-Trichlorophenol | 8,800 | - | - | - | - | - | | - | | | Acetone
2-Butanone | 6,100 | - | 130,000 | 12,000 | - | - | 2,820
2,500 | _ | | 0 | Styrene | 290 | - | - | - | - | - | - | - | | | O-Xylene
Benzoic Acid | - 102 | - | - | - 102 | - | - | 1,200 | - | | | Indicator Parameters | (mg/I) | (mg/1) | (mg/I) | (mg/l) | (mg/l) | (mg/1) | (mg/I) | (mg/I) | | | Chloride | 1,737 | 1,670 | 3,394 | 782 | 1,202 | 2,202 | 5,447 | 5
144 | | | Total Dissolved Solids | 20,356 | 9,406
No Data | 19,652 | 4,636 | 4,626
No Data | 6,128
5.96 | 18,564
No Data | No Data | ^{*} See Appendix for complete tabulation ^{** 0 0 =} Confirmed carcinogin (Listed on NTP list of "88" - 1982) ^{0 =} Highly suspect based on frequency of positive results in Tab animals/mutagenic screening, etc. Figure 9 Figure 8 TABLE 10 DATA SUMMARY FOR SELECTED SOIL SAMPLES* | arcinogen
Code ** | Parameter | WELL 6 -
3' SAMPLE | WELL 10 -
9' SAMPLE | WELL II -
I2' SAMPLE | WELL 15 - | WELL 16 -
3'SAMPLE | WELL 17 -
9' SAMPLE | WELL 17 -
12' SAMPLE | WELL
21 -
3' SAMPLE | WELL 22 -
9' SAMPLE | BERM
#4 | BERM
#7 | BERM
#8 | BERM
#9 | SURFACE
SAMPLE #5 | SURFACE
SAMPLE #8 | SURFACE
SAMPLE #10 | SURFACE
SAMPLE #11 | SURFACE
SAMPLE #12 | |----------------------|---|-----------------------|------------------------|-------------------------|------------|-----------------------|------------------------|-------------------------|------------------------|------------------------|------------|------------|------------|------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------| | N | Metals | (ug/Kg) | 0 0 | Chromium | 6,240 | 148,000 | 100,000 | 7,600,000 | 19,000 | 140,000 | 150,000 | 370,000 | 3,900,000 | 250,000 | 160,000 | 1,600,000 | 5,300,000 | 190,000 | 60,000 | 55,000 | 39,000 | 450,000 | | 0 0 | Copper | 26,000 | 280,000 | 79,000 | 5,100,000 | 150,000 | 66,000 | 45,000 | 500,000 | 335,000 | 180,000 | 250,000 | 590,000 | 890,000 | 580,000 | 220,000 | 880,000 | 200,000 | 560,000 | | 0 0 | Nickel
Zinc | 5,600
79,000 | 148,000 | 43,000 | 400,000 | (13,000) | 40,000 | (20,000) | 37,000 | 390,000 | 240,000 | 160,000 | 24,000 | 34,000 | 57,000 | 49,000 | 64,000
820,000 | (18,000) | 74,000 | | 0.0 | Silver | - | - | - | - | - | - | - | - | - | - | - | - | -,150,000 | 6,100 | - | - | - | - | | 0 0 | Arsenic
Antimony | 6,300 | (2,200) | - | 5,800 | 102,000 | (4,400) | (2,000) | 6,500
(6,700) | 109,000 | | (2,400) | - | 2 | (6,000) | 8,500 | (2,000) | - | (4,300)
(4,500) | | | Selenium | - | - | - | 1,800 | - | - | - | - | - | (1,000) | (900) | - | - | - | - | - | - | - | | 0 0 | Mercury
Cadmium | 330 | 25,000 | 2,100 | 170,000 | 20,000 | 13,600 | 8,000 | 226,000 | 402,000 | 49,000 | 71,000 | 140 | 22,000 | 420,000 | 16,000 | 4,300 | 1,700 | 10,100 | | | Lead | 20,000 | 18,000 | 280,000 | 1,500,000 | 84,000,000 | 87,000 | 39,000 | 6,400,000 | 24,800,000 | 1,090,000 | 5,100,000 | 230,000 | 170,000 | 17,000,000 | 870,000 | 5,900,000 | 190,000 | 1,300,000 | | м | Miscellaneous | Cyanide | 10,100 | - | 22,000 | 55,600 | - | - | (2,700) | - | 179,000 | - | - | - | - | - | | (1,200) | 13,000 | 15,000 | | A | Acid Extractibles | 2,4, Dichlorophenol | - | 5,200 | - | - | - | - | - | 1,900 | - | - | - | - | - | | | - | - | - | | | 2,4, Dimethylphenol
Pentachlorophenol | | - | - | - | - | - | - | - | - | | - | - | - | | 17,000 | | 1,070 | 7,700 | | | PhenoI | - | 27,000 | - | - | - | 12,000 | - | - | - | - | - | - | - | - | 19,000 | - | 1,170 | 2,600 | | P | Pesticides | Aldrin | 2,860 | - | 5 | - | - | - | - | - | | | - | - | - | - | - | | - | - | | | Dieldrin
Heptachlor | 3,340 | | | - | - | - | - | - | - | - | | - | - | - 145 | | - | - | | | | G-BHC (Lindane) | -,950 | | - | - | | - | - | - | | - | 2 | - | - | - 34 | | - | - | - | | 0 0 | PCB - 1016
PCB - 1248 | | - | - | 3,160 | - | - | - | - | - | - | - | - | 2 046 | - | | - | - | - | | 0 0 | PCB - 1254 | | - | | - | - | - | - | - | - | - 2 | - | - | 2,046 | - | - | | 3,300 | 2,912 | | 0 0 | PCB - 1260 | | - | - | 1,710 | - | - | - | - | - | - | - | 2,030 | - | | - | - | - | - | | В | Base Neutrals | 0 | Acenaphthene 1,2 Dichlorobenzene | : | | 8,700 | 565,000 | - | - | - | - | - | - | - | | | - | 5,090,000 | 5 | - | 4,700 | | 0 | Fluoranthene | - | - | 7,300 | - | - | - | - | 7,700 | - | - | - | - | - | - | 15,000 | 59,000 | 234,000 | 16,000 | | 0 | Naphthalene
Bis(2-Ethylhexyl) Phthalate | - | - | 5,200 | - | - | - | - | - | - | - | - | - | - | - | 6,200,000 | 120,000 | 627,000 | 18,000 | | | Benzyl Butyl Phthalate | - | - | 29,900
9,100 | - | - | | - | 3,500 | 410,000 | - | - | - | - | - | - | 500,000 | 860,000 | 12,000 | | 0.0 | Di-N-Butyl Phthalate | - | - | - | - | | - | - | 7 | - | - | | - | - | - | - | - | - | 2,600 | | 0 0 | Benzo(a)anthracene
Benzo(b)fluoranthene | - | - | - | - | - | | | 4,000 | - | - | | - | - | - | 884,000 | | 76,000 | 4,400 | | 0 | Benzo(k)fluoranthene | - | - | - | - | - | _ | | - | - | - | - | - | - | - | 130,000 | - | - | - | | 0 | Chrysene
Anthracene | - | - | | - | | - | - | 2,500
1,600 | - | - | - | - | - | - | 1,210,000 | - | 85,000 | 5,100 | | 0 | Fluorene | | | 16,900 | - | - | - | - | - | - | - | - | - | - | - | 8,600,000 | - | 62,000 | 5,100 | | 0 | Phenanthrene
Pyrene | | | 62,400 | | - | . : | - | 7,000 | - | - | - | - | | | 20,000,000 | 190,000 | 763,000
283,000 | 18,000 | | | folatiles | Tetrachloroethylene | Toluene | - | | 81 | 72,000 | - | 200 000 | 36 | - | - , | - | - | - | - | - | - | - | - | - | | 0 0 | Trichloroethylene
Benzene | - | - | 312 | 580,000 | - | 280,000
350,000 | 19,900 | - | 43 | 37 | - | (21) | | - | - | - | | | | 0 0 | I,I,I-Trichloroethane | - | | 18.2 | 174,000 | - | - | 199.5 | - | - | - | - | - | - | | - | - | - | | | 0 0 | I, I-Dichloroethane | - | - | - 10.2 | - | - | 16,000 | 332.5 | - | - | - | - | | | - | - | | - | - | | 0 0 | Chloroform
Ethylbenzene | - | - | - 143 | - | - | 18,000 | 505 | - | - | - | - | - | - | - | - | - | - | - | | | Methylene Chloride
Fluorotrichlormethane | - | 22 | 143 | 30,000 | 116 | 29,000
49,000 | 1,596 | 21 | 28
30 | 25.52 | - | - | - 13 | 14.9 | - 51 | | - 63 | Ξ | | | | | | - | - | 26 | - | 36 | - | - | - | - | | - | - | - | - | 25 | - | | N. | on-Priority Pollutant Hazardous | Wastes | 2-methylphenol | | - | - | - | - | - | - | - | - | - | - | - | | _ | 7,200 | _ | 760 | - | | | 4-methylphenol
Acetone | - | 1,000 | - | - | - | 5,600 | - | - | - | - | - | - | - | - | 64,000 | - | 3,000 | 4,600 | | | 2-butanone | - | 1,310 | _ | - | - | 580,000 | 92,000 | - | - | - | - | | - | | - | - | - | - | | | 0-xylene
2-Methylnaphthalene | - | - | - " | - | - | 24,000 | 1,100 | - | 42 | - | - | - | _ | 1 | - | - | - | _ | | 0 | Dibenzofuran | - | - | - | - | - | 2,300 | - | - | - | : | - | | | - | 290,000 | 6,000 | 36,000 | 4,800 | | T | otal Contaminant | 162,700 | 670,732 | 1,087,288 | 23 107 070 | 04 514 170 | 7 (1) | | | | | 0. 744 740 | 7 000 ::: | | | | - | | | | | % of Total Sample | 0.02\$ | | | | 84,514,172 | | | | 41,725,143 | | 21,744,360 | 3,000,191 | 7,608,059 | 99,276,294 | 64,910,751 | 8,676,000 | | 4,941,412 | | | | 0.02% | 0.07% | 0.11% | 2.3% | 8.45% | 0.36% | 1.84% | 4.81% | 4.17% | 1.51% | 2.17% | 0.30% | 0.76% | 9.93% | 6.49% | 0.87% | 0.43% | 0.49% | ^{*} See Appendix for complete tabulation. ^{** 0 0 =} Confirmed carcinogen (listed on NTP list of "88" - 1962) 0 = Highly suspect based on frequency of positive results in lab animals/mutagenic screening, etc. Figure 10 Figure 11 Figure 12 The sum of the total priority pollutant acid extractibles (phenols) found in soil samples, does not yield a clear picture (Fig. 13). Levels of from 2 to 102 ppm are scattered over the site from the south end north to Well 10. The groundwater picture suggests a major source may be the lagoons along the west side of the site, near Well 27. Other sources may be the "Reaction Pond" and burial sites or spills near Wells 17, and 5 (Fig. 14). Distribution of priority pollutant base/neutral extractibles in soils extends south from Well 11 almost to the south end of the site. Concentrations in the surface soils range from non-detected to 5.8% (Fig. 15), within this area. Evidently these compounds are relatively strongly adsorbed on soils, because only very low levels are found in groundwater. Figure 13 Figure 14 Figure 15 #### BIBLIOGRAPHY - Aldis, Hussein, (July 7, 1982), Survey of Drainage and Industrial Development around Western Processing, Inc., Kent, Washington. Memorandum From Ecology and Environment, Inc., to Environmental Protection Agency. TDD 10-8203-04B. - Lewis, R.J. and R.L. Tatken. eds., 1982 Registry of Toxic Effects of Chemical Substances. U.S. Dept. of HHS, Public Health Service, Center for Disease Control, National Institute for Occupational Safety & Health (NIOSH), Rockville, Maryland 20852. DHHS (NIOSH) Publ. #81-116. - Luzier, J.E. (1969), Geology and Ground Water Resources of Southwestern King County, Washington, Water Supply Bulletin No. 23, Dept. of Water Resources, Olympia, WA. - Mullineaux, Donald R. (1970), Geology of the Renton, Auburn, and Black Diamond Quadrangles, King County, Washington. Geological Survey Professional Paper 672. - National Enforcement Investigations Center (NEIC), 1980, Enforcement considerations for evaluation of uncontrolled hazardous waste disposal sites by contractors [draft]: Environmental Protection Agency. - National Toxicity Program: Second Annual Report, 1982 List of 88 Known or Suspected Carcinogens. U.S. Dept. of HEW, Public Health Service, Box 12233, RTP, North Carolina 27709. - Soderman, J.V. ed. 1982 CRC Handbook of Identified Carcinogens and Non-carcinogens: Carcinogenicity-Mutagenicity Database. Two volumes, CRC Press, Inc., LC No. 82-1222. - U.S. Environmental Protection Agency, Region 10 Report of Western Processing Vicinity Survey May 20-21, 1982. - U.S. Government Printing Office (GPO), 1979, Guidelines Establishing Test Procedures for the analysis of Pollutants; Proposed Regulations in Federal Register, vol. 44, No. 233, pp. 69463-69575. |
1980, | Federal | Register, | vol. | 45, | 33122 | | |-----------|---------|-----------|------|-----|-------|--| |
1979, | Federal | Register, | vol. | 44, | 34408 | | | 1976, | Federal | Register, | vol. | 41, | 52780 | | APPENDIX A PART I 129 PRIORITY POLLUTANTS LIST # 129 PRIORITY POLLUTANTS* (WITH CHEMICAL ABSTRACT SERVICE NUMBERS) | METALS | | BASE-NEUTRAL EXTRACTIBLES | | ACID EXTRACTIBLES | | |--------------------|------------|------------------------------|-----------|----------------------------|------------| | ANTIMONY |
7440-36-0 | ACENAPHTHENE | 83-32-9 | 2-CHLOROPHENOL | 95-57-8 | | ARSENIC | 7440-38-2 | ACENAPHTHYLENE | 208-96-8 | 2,4-DICHLOROPHENOL | 120-83-2 | | BERYLLIUM | 7440-41-7 | ANTHRACENE | | 2,4-DIMETHYLPHENOL | 105-67-9 | | CADMIUM | 7440-43-9 | BENZIDINE | 92-87-5 | 4,6-DINITRO-O-CRESOL | 534-52-1 | | CHROMIUM | 7440-47-3 | BENZO(A)ANTHRACENE | 56-55-3 | 2,4-DINITROPHENOL | 51-28-5 | | COPPER | 7440-50-8 | BENZO(A)PYRENE | 50-32-8 | 2-NITROPHENOL | 88-75-5 | | LEAD | 7439-92-1 | BENZO(B)FLUORANTHENE | 205-99-2 | 4-NITROPHENOL | 100-07-7 | | MERCURY | 7439-97-6 | BENZO(GHI)PERYLENE | | P-CHLORO-M-CRESOL | 59-50-7 | | NICKEL | 7440-02-0 | BENZO(K)FLUORANTHENE | | PENTACHLOROPHENOL | 87-86-5 | | SELENIUM | 7782-49-2 | BIS(2-CHLOROETHOXYL) METHANE | | | 108-95-2 | | SILVER | 7440-22-4 | BIS(2-CHLOROETHYL) ETHER | 111-44-4 | 2,4,6-TRICHLOROPHENOL | 88-06-02 | | THALLIUM | 7440-28-0 | BIS(2-CHLOROISOPROPYL) ETHER | | | | | ZINC | 7440-66-6 | BIS(2-ETHYLHEXYL) PHTHALATE | | VOLATILES | | | | | 4-BROMOPHENYL PHENYL ETHER | 101-55-3 | | | | PESTICIDES | | 2-CHLORONAPHTHALENE | 91-58-7 | ACROLEIN | 107-02-8 | | | | CHRYSENE | 218-01-9 | ACRYLONITRILE | 107-13-1 | | ALDRIN | 309-00-2 | 4-CHLOROPHENYL PHENYL ETHER | | BENZENE | 71-43-2 | | ALPHA BHC | 319-84-6 | 1,2,5,6-DIBENZANTHRACENE | 53-70-3 | BIS(CHLOROMETHYL) ETHER | 542-88-1 | | BETA BHC | 319-85-7 | 1,2-DICHLOROBENZENE | 95-50-1 | BROMODICHLOROMETHANE | 15-27-4 | | GAMMA BHC | 58-89-9 | 1,3-DICHLOROBENZENE | 541-73-1 | BROMOFORM | 75-25-2 | | DELTA BHC | 319-86-8 | 1,4-DICHLOROBENZENE | | CARBON TETRACHLORIDE | 56-23-5 | | CHLORDANE | 5103-71-9 | 3,3-DICHLOROBENZIDINE | 91-94-1 | CHLOROBENZENE | 108-90-7 | | 4,4-DDD | 72-54-8 | DIETHYL PHTHALATE | 84-66-2 | CHLOROETHANE | 75-00-3 | | 4,4-DDE | 72-55-9 | DIMETHYL PHTHALATE | 131-11-3 | 2-CHLOROETHYL VINYL ETHER | 110-75-8 | | 4,4-DDT | 50-29-3 | DI-N-BUTYL PHTHALATE | 84-74-2 | CHLOROFORM | 67-66-3 | | DIELDRIN | 60-57-1 | 2,4-DINITROTOLUENE | 121-14-2 | CIS-1,3-DICHLOROPROPENE | 542-75-6 | | ALPHA ENDOSULFAN | 115-29-7 | 2,6-DINITROTOLUENE | 606-20-2 | DIBROMOCHLOROMETHANE | 124-48-1 | | BETA ENDOSULFAN | 115-29-7 | DI-N-OCTYL PHTHALATE | | DICHLOROFLUOROMETHANE | 75-71-8 | | ENDOSULFAN SULFATE | 1031-07-8 | 1,2-DIPHENYLHYDRAZINE | 122-66-7 | 1,1-DICHLOROETHANE | 75-34-3 | | ENDRIN | 72-20-8 | FLUORANTHENE | 206-44-0 | 1,2-DICHLOROETHANE | 107-06-2 | | ENDRIN ALDEHYDE | 7421-93-4 | FLUORENE | 86-73-7 | 1,1-DICHLOROETHYLENE | 75-35-4 | | HEPTACHLOR | 76-44-8 | HEXACHLOROBENZENE | 118-74-1 | 1,2-DICHLOROPROPANE | 78-87-5 | | HEPTACHLOR EPOXIDE | 1024-57-3 | HEXACHLOROBUTADIENE | 87-68-3 | ETHYLBENZENE | 100-41-4 | | PCB 1016 | 12674-11-2 | HEXACHLOROCYCLOPENTADIENE | 77-47-4 | METHYL BROMIDE | 74-83-9 | | PCB 1221 | 111-042-82 | HEXACHLOROETHANE | 67-72-1 | METHYL CHLORIDE | 74-87-3 | | PCB 1232 | | INDENO(1,2,3-CD)PYRENE | 193-39-5 | METHYLENE CHLORIDE | 75-09-2 | | PCB 1242 | 534-692-19 | ISOPHORONE | 78-59-1 | 1,1,2,2-TETRACHLOROETHANE | 79-34-5 | | PCB 1248 | 126-722-96 | NAPTHALENE | 91-20-3 | TETRACHLOROETHYLENE | 127-18-4 | | PCB 1254 | 110-916-91 | N-BUTYL BENZYL PHTHALATE | 85-68-7 | 1,2-TRANS-DICHLOROETHYLENE | 540-59-0 | | PCB 1260 | | NITROBENZENE | 98-95-3 | TRANS-1,3-DICHLOROPROPENE | 10061-02-6 | | TOXAPHENE | 8001-35-2 | N-NITROSODIMETHYLAMINE | 62-75-9 | 1,1,2-TRICHLOROETHANE | 79-00-5 | | | | N-NITROSODI-N-PROPYLAMINE | 621-64-7 | TRICHLOROETHYLENE | 79-01-6 | | MISCELLANEOUS | | N-NITROSODIPHENYLAMINE | 86-30-6 | TRICHLOROFLUOROMETHANE | 75-69-4 | | | | PHENANTHRENE | 85-01-8 | 1,1,1-TRICHLOROETHANE | 71-55-6 | | CYANIDE | 57-12-5 | PYRENE | 129-00-0 | TOLUENE | 108-88-3 | | | | TCDD | 1746-01-6 | VINYL CHLORIDE | 75-01-4 | | | | 1,2,4-TRICHLOROBENZENE | 120-82-1 | | | ^{*}LIST COMPILED BY EPA APPENDIX B PART I SUMMARY OF ANALYTICAL RESULTS FOR PRIORITY POLLUTANTS M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STA | ATION DESCRIPTION | | WELL
LEPTH N | ITR
M NUM | DATE | TIME | AL* | CR | - M E T
BA* | AL | S F | A R A | | TEF | S |
E* | NI | | |-----|-------------------|----|-----------------|--------------|--------|------|------|--------|----------------|------|-------|-------|---------|------|---------|--------|-------|------| | | | 01 | 3 : | S MJ9301 | 821007 | 0900 | 840 | 1 1 M | 1 10 | MI | 0.5 M | 1 5 | ——
М | 5 | MI 400 | | 1 4 | MI | | | | 01 | 6 9 | S MJ9302 | 821007 | 0915 | 840 | 1 36 | 1 10 | MI - | 0.5 M | | M | | 1 180 | | 1 14 | 1 | | | | 01 | 9 3 | S MJ9303 | 821007 | 0930 | 2700 | 1 11.0 | 24 | 1 | 0.5 M | 1 5 | M | 150 | 1 730 | | 1 52 | i | | | | 01 | | S MJ9304 | | | 1800 | 1 14 | 1 33 | 1 | 0.5 M | | MI | | 11900 | | 1 15 | i | | | | 01 | | M MJ9312 | | | 240 | 1 70 | | 1 | | Ì | - 1 | 120 | 1.500 | | 1 110 | 1 | | | | 01 | | MJ9311 | | | | 1 | 1 | 1 | | i | i | 120 | 1 160 | | 1 | 1 | | | | 02 | | S MJ9313 | | | 770 | 1 10 | 1 104 | i | | i | i | 210 | 12200 | | 55 | 1 | | | | 02 | | S MJ9314 | 821014 | 1030 | 1200 | 1 | 1 17 | 1 | | i | i | 7.0 | | | 1)) | i | | | | 02 | | S MJ9315 | | | 800 | 92 | 1 | i | | i | i | 44 | 11600 | | 4.8 | i | | | | 02 | 12 9 | 5 MJ9316 | 821014 | 1040 | 1200 | 1 21 | 1 | 1 | | i | i | 83 | 1 750 | | 25 | ì | | | | 02 | 15 9 | S MJ9317 | 821014 | 1045 | 1700 | 1 27 | 1 28 | i | | i · | i | 79 | 11220 | | 1 14 | 1 | | | | C2 | SHAL W | MJ9318 | 821102 | 1100 | | 1 | | i | | i | i | ,,, | 1 140 | | 1 200 | 1 | | | | 03 | 3 9 | MJ9319 | 821014 | 1155 | 1200 | 1 23 | 76 | i | | i | i | 210 | 14600 | | 72 | | | | | 03 | 6 9 | MJ9320 | 821014 | 1205 | 2400 | 1 370 | 1 100 | i | | i | i | 380 | 14400 | | 1 120 | 1 | | | | 03 | 9 9 | MJ9321 | 821014 | 1210 | 1600 | 1 93 | 84 | i | | i | 1 | 148 | 17500 | | 1 71 | 1 | | | | 03 | | MJ9324 | | | | 12200 | İ | i | 3.0 | i | i | 3800 | 17500 | | | 1 | | | | 04 | 3 9 | MJ9325 | 821018 | 1415 | 1800 | 1 12 | 42 | i | 0.5 M | 1 5 | MI | | 12300 | | 13600 | 1 | | | | 04 | | MJ9326 | | | | 1 1.5 | 27 | i | 0.5 M | | MI | | 13800 | | 1 4 | MI | | | | 04 | 9 9 | MJ9327 | 821018 | 1435 | 2300 | 1 16 | 23 | i | 0.5 M | | MI | | 12900 | | | MI | | | | 04 | SHAL W | MJ9330 | 821102 | 1500 | | i | | i | 0.5 | 1 | 1.1 | 40 | 1 540 | | 1 160 | MI | | | | 05 | 3 9 | MJ9331 | 821018 | 1330 | 1500 | 1 38 | 147 | i | 0.5 M | 5 | MI | 140 | 14900 | | | A. I | | | | 05 | 6 5 | MJ9332 | 821018 | 1330 | 2700 | 400 | 31 | i | 0.5 M | gr | M | | 14300 | | 1 133 | Mil | | | | 05 | 9 5 | MJ9333 | 821018 | 1330 | 860 | 1 70 | 31 | i | 0.5 M | | MI | | 13500 | | 74 | 1 | | | | 05 | 12 S | MJ9334 | 821018 | 1330 | 5300 | 11300 | 28 | i | 0.5 M | | | 570 | 18000 | | 270 | 1 | | | | 05 | SHAL W | MJ9336 | 821103 | 1400 | 2300 | 1 400 | | i | | 12300 | 1.1 | | K 11900 | | | / | | | | 06 | | MJ9337 | | | | 6.24 | 10 | MI | 0.5 M | | Mil | 26 | 14100 | | | < | | | | 06 | | MJ9338 | | | | 1 130 | 76 | 1 | 0.5 M | | MI | 100 | | | 5.6 | 1 | | | | 06 | 9 S | MJ9339 | 821018 | 1050 | 2200 | 580 | 24 | i | 0.5 M | | MI | 198 | 14900 | | 9.7 | . ! | | | | 06 | 12 5 | MJ9340 | 821018 | 1100 | 2100 | 69 | 36 | 1 | 0.5 M | | | | 13100 | | 21 | | | | | 06 | | MJ9342 | | | 2100 | 40 | 20 | - | U.5 M | 1 2 | MI | 76 | 12600 | | 32 | 1 | | | | 07 | 3 5 | MJ9343 | 821014 | 1415 | 2400 | 12 | 27 | 1 | | 1 | - 1 | 51 | 1 340 | | 11100 | 1 | | | | 07 | 6 9 | MJ9344 | 821014 | 1412 | 2200 | 64 | 27 | 1 | | | ! | 28 | 14500 | | 4.8 | 1 | | | | 07 | 9 9 | MJ9345 | 821014 | 1425 | 2100 | 1 150 | 37 | 1 | | | 1 | 350 | 11110 | | 27 | 1 | | | | 07 | | MJ9348 | | | | | | 1 | | | 1 | 160 | 11900 | | 18 | 1 | | | | 08 | | MJ9349 | | | | 260 | 7.0 | 1 | | | 1 | 390 | 920 | | 600 | 1 | | | | 08 | | MJ9350 | | | | 24 | 32 | 1 | | | 1 | 40 | 18500 | | 11.2 | 1 | | | | 08 | | MJ9051 | | | | 11170 | 49 | ļ | | | 1 | 170 | 18500 | | | 1 | | | | 08 | SHAL W | MJ9054 | 021025 | 1500 | 2200 | 192 | | 1 | | | - 1 | 87 | 11700 | | | 1 | | | | 09 | 3 C | MJ9055 | 021100 | 1000 | | 26 | | ! | | 150 | - 1 | 340 | 1 120 | | 570 | 1 | | | | 09 | | | | | 640 | 25 | | ! | | | ı | 25 | 45 | | | | | | | 09 | 0 0 | MJ9056 | 021019 | 1030 | 1180 | 15 | 7.0 | 1 | | | 1 | 50 | 1 380 | - 1 | 41 | 1 | | | | 09 | | MJ9057 | | | | 6.6 | 30 | 1 | | | 1 | 21 | 12440 | | 22 | 1 | | | | | | MJ9058 | | | 870 | 1.5 | | 1 | | | 1 | | 1 410 | | 12.3 | 1 | | | | | SHAL W | MJ9060 | 021103 | 1200 | 380 | 13 | | 1 | | 72 | 1 | | 1 245 | K | 140 | 1 | | | | 10 | | MJ9061 | | | | 660 | 23 | 1 | | | 1 | 210 | 12400 | | 41 | 1 | | | | 10 | | MJ9062 | | | | 42 | | 1 | | | 1 | 220 | 1 550 | | 270 | 1 | | | | 10 | 9 5 | MJ9063 | 821019 | 1310 | 1800 | 148 | | 1 | | | 1 | 280 | 12300 | - 1 | 148 | 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL
DEPTH | ITR
M NUM | DATE | TIME | AL* | CR | - META | L S P | ARAM
CO* | E T E R
CU | S | NI | |---------------------|------|---------------|--------------|--------|------|-------|--------|--------|-------|-------------|---------------|---------|---------| | | 10 | 12 | S MJ9064 | 821019 | 1340 | 4700 | 1 850 | | | | 11240 | 12900 | 320 | | | 10 | 15 | S MJ9065 | 821019 | 1405 | 1700 | 1 270 | 1 16 | ĺ | i | 1 7.2 | 12700 | 1 140 | | | 10 | SHAL | W MJ9066 | 821104 | 1000 | 430 K | 1 17 K | I | l | 15500 | 16300 | 1 480 K | 1 280 K | | | 11 | 3 | S MJ9067 | 821008 | 1100 | 540 | 1 140 | 1 10 M | 0.5 M | 1 5 M | 11 19 | 1 330 | 6.2 | | | 11 | 6 | S MJ9068 | 821008 | 1115 | 1320 | 1 340 | 1 17 | 0.5 M | 1 5 N | 11 105 | 11300 | 1 17 | | | - 11 | 8 | S MJ9069 | 821008 | 1130 | 970 | 1 220 | 1 10 M | 0.5 M | 1 5 M | 11 80 | 1 770 | 1 12.1 | | | 11 | 10 | S MJ9070 | 821008 | 1145 | 3300 | 1 36 | 1 17 | 0.5 M | 1 5 N | 11 460 | 11000 | 74 | | | 11 | 12 | S MJ9071 | 821008 | 1200 | 570 | 1 100 |
36 | 0.5 M | 1 5 M | 11 79 | 11800 | 1 43 | | | - 11 | SHAL | W MJ9072 | 821109 | 1030 | 510 K | 11400 | 1 | 1 | 12400 | 14200 | 1 410 K | 1 77 K | | | 11 | DEEP | W MJ9078 | 821109 | 1100 | 420 K | 1 770 | 1 | | 12200 | 13600 | 1 425 K | 1 69 K | | | 12 | 3 | S MJ9079 | 821025 | 1130 | 4400 | 1 15 | 41 | | 1 | 1 77 | 15800 | | | | 12 | 6 | S MJ9080 | 821025 | 1140 | 1100 | 1 300 | 1 21 | 1 | 1 | 1 65 | 12200 | 1 | | | 12 | 9 | S MJ9081 | 821025 | 1200 | 3900 | 220 | 45 | | 1 | 1 124 | 13400 | 1 | | | . 12 | 12 | S MJ9082 | 821025 | 1230 | 2800 | 48 | 1 36 | | i | 1 55 | 15500 | 25 | | | 12 | 15 | S MJ9083 | 821025 | 1240 | 3200 | 79 | 38 | | 1 | 1 46 | 15000 | 9.7 | | | 12 | SHAL | W MJ9084 | 821103 | 1200 | 1900 | 1 57 | 1 | | 1 | 1 120 | 1 150 | 620 | | | 13 | 3 | S MJ9085 | 821027 | 1310 | 1800 | 1 48 | 41 | | 1 | 1 123 | 11800 | 1 11.2 | | | 13 | | S MJ9086 | | | 1400 | 7.5 | 1 17 | | İ | 1 14 | 11600 | 1 | | | 13 | | S MJ9087 | | | | 1 3.2 | 1 45 | 44 | i | i | 16400 | | | | 13 | | W MJ9090 | | | | i | i . | | i | i · | 1 130 | 390 | | | 14 | | S MJ9091 | | | 1700 | 1 190 | 71 | | 7.6 | 1 137 | 15000 | 1 150 | | | 14 | | S MJ9092 | | | | 1 210 | 1 27 | | İ | 1 60 | 11600 | 23 | | | 14 | | S MJ9093 | | | | 1 130 | i | | i | 1 23 | 11200 | 1 15 | | | 14 | | S MJ9094 | | | | 1 200 | 1 | | i | 1 110 | 12200 | 49 | | | 14 | | S MJ9095 | | | | 360 | 19 | | i | 1 130 | 12200 | 70 | | | 14 | | | 821104 | | 66 K | 65 K | 1 | | 11800 | 14300 | 1 39 K | 76 K | | | 15 | | S MJ9097 | | | | 1 110 | 1 130 | ĺ | 8.6 | 13700 | 18600 | 1 170 | | | 15 | 6 | S MJ9098 | 821025 | 1510 | 19.5K | 17600 | 1 180 | | 1 10.1 | 15100 | 1 10.4K | 400 | | | 15 | | S MJ9099 | | | 17.9K | | 1 150 | | 1 12.4 | 15700 | 19800 | 500 | | | 15 | SHAL | W MJ9102 | 821112 | 1230 | 930 | 1 170 | 1 | ĺ | 1 | 13400 | 1 160 | 360 | | | 16 | 3 . | S MJ9103 | 821020 | 1310 | 216 | 1 19 | 1 | - | 1 | 1 150 | 1 380 | 1 13 | | | 16 | | S MJ9104 | | | 2400 | 600 | 20 | | 1 | 1 260 | 11900 | 76 | | | 16 | 9 : | S MJ9105 | 821020 | 1345 | 2100 | 1 240 | 1 | | I | 1 59 | 11700 | 41 | | | 16 | | S MJ9106 | | | | 1 200 | 1 26 | | ĺ | 1 72 | 12900 | 32 | | | 16 | 15 | S MJ9107 | 821020 | 1430 | 2600 | 620 | 1 | | 1 | 1 24 | 11200 | 7.8 | | | 16 | | W MJ9108 | | | | 1 600 | İ | | 1 310 | 1 360 | 1 850 | 2500 | | | 17 | 3 : | S MJ9109 | 821011 | 1100 | 1900 | 1 150 | | | 1 | 1 52 | 13500 | 20 | | | 17 | | S MJ9110 | | | | 1 250 | 1 15 | | 1 | 1 112 | 15200 | 46 | | | 17 | | S MJ9111 | | | | 140 | 1 21 | | 1 | 1 66 | 17000 | 40 | | | 17 | | S MJ9112 | | | | 1 150 | 1 | | 1 | 1 45 | 13900 | 20 | | | 17 | | S MJ9113 | | | | 1 220 | 33 | | 1 | 1 48 | 13600 | 29 | | | 17 | | S MJ9114 | | | | 1 450 | 33 | | 1 | 77 | 14500 | 31 | | | 17 | | S MJ9116 | | | | 370 | 1 25 | | 1 | 1 64 | 15500 | 29 | | | 17 | | S MJ9117 | | | | 1 58 | 1 20 | | 1 | 1 33 | 15100 | 12.0 | | | 17 | | S MJ9118 | | | | 1 16.1 | | | İ | 1 14 | 14900 | | | | 17 | | S MJ9119 | | | | 1 37 | 35 | | 1 | 1 23 | 15100 | 7.6 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL ITR
DEPTH M NUM | DATE | TIME | AL | * | CR | - META
BA* | BE BE | A R A M I | E T E R S | FE* | NI | |---------------------|----|--------------------------|--------|------------|------|----|-------------|---------------|-------|-----------|--------------|----------------|--------| | | 17 | SHAL W MJ8042 | | | 330 | K | 1 32 K | | | 1400 | 17200 | 1 410 K | 1 26 K | | | 17 | DEEP W MJ9120 | | | 65 | K | 680 | | | 490 | 240 | | 13200 | | | 18 | 3 S MJ912 | | | | | 320 | 48 | | | 56 | 13400 | 6.7 | | | 18 | 6 S MJ9122 | | | | | 980 | 25 | | 1 | 325 | 16400 | 1 39 | | | 18 | 9 S MJ912 | | | | | 140 | 47 | | | 221 | 13000 | 1 20 | | | 18 | SHAL W MJ9126 | | | | | | | | 80 | 1 | 16800 | 530 | | | 19 | 3 S MJ9127 | | | | | 5.8 | | | | | 11340 | 1 13.4 | | | 19 | 6 S MJ9128 | | | 1700 | | 20 | 19 | | 1 | | 11800 | 8.5 | | | 19 | 9 S MJ9129 | | | 1300 | | 5.1 | 19 | | 1 | 1 10.8 | | 1 | | | 19 | 12 S MJ9130 | | | 980 | V | 10.7 | | | | 1 15 | 960 | | | | 19 | SHAL W MJ9132 | | | 12 | K | 1 15 | 1 20 | | 120 | | 1 190 | 860 | | | 20 | 3 S MJ9133
6 S MJ9134 | | | 260 | | 97
 150 | 22 | | | | 11300 | 8.7 | | | 20 | 9 S MJ9135 | | 1010 | | | 1 30 | 1 24 1 | | l | 85 | 700 | 9.2 | | | 20 | 12 S MJ913 | | | | | 7.9 | 24
 25 | | | 9.2 | 900 | 1 15 | | | 20 | 15 S MJ9137 | | | 1600 | | 1 7.9 | 1 22 1 | | | | 12600
12500 | 1 26 | | | 20 | SHAL W MJ9138 | | | 11 | K | 52 | i i | | | 1 410 | 57 K | 470 | | | 21 | | 821021 | | 1800 | 15 | 1 370 | 56 | | | | 14300 | 1 37 | | | 21 | 6 \$ MJ9140 | | | | | 1 570 | 50 | | | 1 450 | 13000 | 11900 | | | 21 | 9 S MJ9141 | | | | | 340 | 48 | | | | 13000 | 1 31 | | | 21 | 12 S MJ9142 | | 1535 | | | 54 | i . | | | | 11800 | 1 17 | | | 21 | 15 S MJ9143 | | | 1500 | | 1 31 | 18 1 | | | | 11900 | 7.8 | | | 21 | SHAL W MJ9144 | | | 480 | | 1 160 | | | i | 1 | 65 K | | | | 22 | 3 S MJ9145 | 821012 | 0900 | 1050 | | 11150 | 25 | | | 1 103 | 15600 | 1 500 | | | 22 | 6 S MJ9146 | 821012 | 0930 | 2600 | | 12400 | 100 1 | | | 1 149 | 18200 | 1 219 | | | 22 | 9 S MJ9147 | 821012 | 1000 | 5300 | | 13900 | 148 | | | 335 | 1 13.4K | 1 390 | | | 22 | 12 S MJ9148 | 821012 | 1030 | 5000 | | 1 560 | 50 | | | 1 122 | 16000 | 1 87 | | | 22 | 15 S MJ9149 | 821012 | 1100 | | | 1 | 1 | | | _ | 1 38 | 1 | | | 22 | SHAL W MJ9150 | | | 700 | | 1 78 | 1 150 1 | | | 1 | 4000 | 1 130 | | | 22 | DEEP W MJ9156 | | | 850 | | 1 22 | | | 100 | 1 | 1 27 K | 1 280 | | | 23 | 3 S MJ9157 | | | | | 230 | 27 | | | 60 | 14800 | 1 63 | | | 23 | 6 S MJ9158 | | | - | | 1 510 | 39 | | 1 | S. Carlos | 17800 | 1 31 | | | 23 | 9 S MJ9159 | | | | | 550 | 38 | | | 60 | 1 10.5K | 32 | | | 23 | SHAL W MJ9162 | | | | | 1 400 | 150 | | | 51 | 40 K | | | | 24 | 3 S MJ9163 | | | | | 6.7 | 19 | | | | 12200 | 56 | | | 24 | 6 S MJ9164
9 S MJ9165 | | | 1400 | | 5.2 | 20 | | | | 2000 | 1 5 6 | | | 24 | 12 S MJ9166 | | | | | 2.7 | 1 21 1 | | | | 11400 | 5.8 | | | 24 | 15 S MJ9167 | | | | | 4.2 | 21 | | - | | 6000 | 7.7 | | | 24 | SHAL W MJ9168 | | | | | 1 | | | | | 11800 | | | | 25 | 3 S MJ9169 | | | | | 5.2 | 17 | | | 1 | 14100 | 1 | | | 25 | 6 S MJ9170 | | | | | 22 | 17
 47 | | | 1 21 | 2000
 7200 | 1 6 6 | | | 25 | 9 S MJ9171 | | | | | 1 13.5 | 45 | | | · CONTRACTOR | | 6.6 | | | 25 | SHAL W MJ9174 | | | 2700 | | 1 10.0 | 47 | | | | 18000
11700 | 7.4 | | | 25 | DEEP W MJ9180 | | 6.6.5.5.5. | 845 | | i | 1 | | | | 12700 | | | | 26 | 3 S MJ9181 | | | | | 3.0 | 30 | | | 1 12 | 12/00 | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL
DEPTH I | ITR
M NUM | DATE | TIME | AL | * | CR | | M E T | ΓΑ L
* | S P | ARAM
CO* | E T E | | FE* | | N I | |---------------------|----|-----------------|------------------|--------|------|------|---|-------|-----|-------|-----------|-------|-------------|-------|-----|-------|-------|-------| | | 26 | 6 | S MJ9182 | 821026 | 1440 | 6200 | | 1 5.4 | | 61 | | | 1 | 1 25 | | 10.2K | | | | | 26 | 9 | S MJ9183 | 821026 | 1450 | 5000 | | 8.4 | İ | 49 | i | | İ | 1 24 | i | 9200 | 20 | 5.5 | | | 26 | SHAL | M MJ9186 | 821111 | 1230 | | | 1 | 1 | 340 | 1 | | 1 80 | i | | 3200 | 1 49 | | | | 27 | SHAL | W MJ8046 | 821116 | 1100 | 12 | K | 1 | 1 | | 1 | | 1 360 | ì | i | 200 | 16400 | | | | 28 | SHAL | M MJ8047 | 821116 | 1230 | 38 | K | 16100 | | 180 | 1 | | 13600 | 1 590 | i | 54 K | 1 77 | | | | 29 | SHAL | W MJ8045 | 821115 | 1300 | 900 | | 1 15 | 1 | | 1 | | 400 | 1 | i | 410 K | | | | | 30 | | MJ8033 | | | | | 1 | 1 | | 1 | | 1 | i | | 4600 | 1 210 | | | BERM #1 | | | S MJ9187 | | | | | 54 | - | 130 | 1 | | 8.5 | 1 190 | | 7500 | 1 140 | | | BERM #2 | | | MJ9188 | | | | | 1 102 | 1 | 150 | 1 | | 8.8 | 1 210 | 17 | 7800 | 1 1 | 140 I | | BERM #3 | | | MJ9189 | | | 990 | | 1 110 | 1 | 66 | 1 | | 1 10 | 1 140 | 1 | 10 K | 1 2 | 200 | | BERM #4 | | | MJ9190 | | | | | 250 | 1 | 28 | - 1 | | 1 12 | 1 180 | 1 | 18.9K | 1 2 | 240 | | BERM #5 | | | MJ9191 | | | 1400 | | 98 | 1 | 46 | 1 | | 9.1 | 1 570 | 1 | 10.4K | 1 1 | 80 | | BERM #6 | | | MJ9192 | | | 850 | | 36 | 1 | 88 | 1 | | 1 16 | 1 105 | 1 | 10.4K | 1 290 |) | | BERM #7
BERM #8 | | | MJ9193 | | | | | 1 160 | 1 | 39 | 1 | | 1 12 | 250 | 1 | 15.3K | 1 160 | | | BERM #9 | | | MJ9194 | | | | | 11600 | 1 | 37 | - 1 | | | 590 | | 3400 | 1 24 | | | BLANK | | | MJ9195 | | 1200 | | | 5300 | | 31 | | | 1 | 890 | | 3900 | 1 34 | | | PEA GRAVEL | | | MJ9197 | | | 20 | M | 1 1 | MI | 10 | MI | 0.5 M | 1 5 N | 11 5 | MI | | 11 4 | MI | | SS#2 | | | MJ9198 | | 0050 | 180 | | 11100 | ! | | 1 | | 1 | 1 | 1 | 160 | 1 | 1 | | SS#3 | | | MJ9328 | | | | | 11100 | - 1 | 100 | 1 | | 1 | 320 | - | 3700 | 78 | | | SS#4 | | | MJ9329 | | | 1000 | | 78 | - 1 | | 1 | | 1 | 70 | | 1600 | 1 21 | | | SS#5 | | | MJ9335 | | | 430 | | 68 | 1 | | ļ | | | 84 | | 300 | 1 17 | | | SS#6 | | | MJ9341 | | | 710 | | 1 190 | 1 | 140 | ! | | | 580 | | 9200 | 1 57 | | | SS#7 | | | MJ9346
MJ9347 | | | 830 | | 1 210 | - ! | 84 | 1 | | | 1 340 | | 2600 | 58 | | | SS#8 | | | MJ9059 | | | 850 | | 1 46 | 1 | 49 | 1 | | l | 240 | | 3300 | 1 49 | | | SS#9 | | | MJ9073 | | | 1000 | | 60 | 1 | 25 | ! | | ļ | 220 | | 000 | 1 49 | | | SS#10 | | | MJ9073 | | | 550 | | 31 | 1 | 37 | 1 | | | 86 | | 3700 | 1 740 | | | SS#11 | | | MJ9074 | | | 810 | | 55 | 1 | 25 | 1 | - | | 1 880 | | 3000 | 1 64 | | | SS#12 | | | MJ9075
MJ9076 | | | 200 | | 39 | 1 | 7. | 1 | | | 200 | 3.5 | 260 | 1 18 | | | TRANSFER BLANK | | | MJ8043 | | | 1100 | | 450 | 1 | 71 | 1 | | 7.1 | 560 | | 3700 | 1 74 | | | TRANSPORT BLANK | | | MJ8043 | | | | | | - 1 | | ! | | | 1 | 1 | 120 | 1 | 1 | | TIVITOT OTT BEAT | | , | MJ0044
 021101 | 1100 | | | 1 | 1 | | 1 | | | 1 | 1 | 160 | 1 | 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL
DEPTH N | ITR
NUM | DATE | TIME | MN* | ZN | M E T
B* | A L | . s
v* | P | A R A | M E | T E R S
AS | SB | | SE | |---------------------|----------------------------------|--|--|--|--------------------------------------|--|--|--|-------------------------------|----------------------|--------------------------|----------------|----------------------|-----------------------------------|------------------|----------------|--| | | 01
01
01
01
01 | 6 S
9 S
12 S
SHAL W
DEEP W | MJ9301
MJ9302
MJ9303
MJ9304
MJ9312
MJ9311 | 821007
821007
821007
821108
821108 | 0915
0930
0945
1330
1400 | 2.9
5.6
9.4
6.4
1100
1300 | 130
 160
 381
 150
 1000
 48 | 29
 29
 35
 44
 2900
 860 | 1 1 1 1 1 | 20
20
20
20 | MI
MI
MI |

 | MI
MI
MI | M
 M
 3.7
 M
 | 2
2
2
2 | MI
MI
MI | 0.2 MI
0.2 MI
0.2 MI
0.2 MI | | | 02
02
02
02
02 | 6 S
9 S
12 S | 6 MJ9313
6 MJ9314
6 MJ9315
6 MJ9316
6 MJ9317 | 821014
821014
821014
821014 | 1030
1035
1040
1045 | 610
36
42
64
130 | 260
 88
 71
 200
 99 | | 1 | | 1 | | | 1.3 | | | - | | | 02
03
03
03
03
04 | 3 S
6 S
9 S
SHAL W | MJ9318
MJ9319
MJ9320
MJ9321
MJ9324
MJ9325 | 821014
821014
821014
821115 | 1155
1205
1210
1200 | 670
1800 | 110
 420
 1500
 440
 5900 | 5700
 |

 | 20 |

 | 12 | I | 2.1
2.2
600
2.8 | 108 | M | 0.2 M | | | 04
04
04
05
05 | 6 S
9 S
SHAL W
3 S | MJ9326
MJ9327
MJ9330
MJ9331
MJ9332 | 821018
821018
821102
821018 | 1430
1435
1500
1330 | 146
112
6500
2800 | 1 24
1 46
1 38
1 510 | 10
 10
 4000
 10
 13 | MI
MI
MI | 20
20
20
20 | MI
MI
MI | 1 | MI
MI
MI | 4.4
2.5
1.7
2.7 | 2 2 2 | MI
MI
MI | 0.2 MI
0.2 MI
0.2 MI
0.2 MI
0.2 MI | | | 05
05
05
06
06 | 12 S
SHAL W
3 S | MJ9333
MJ9334
MJ9336
MJ9337
MJ9338 | 821018
821103
821018 | 1330
1400
1035 | 300
700
54
150
153 | 350
 2000
 650
 79
 131 | 10
 15
 11 k
 10 | MI
MI
MI | 20
20
20
20 | MI
MI
MI
MI | 1
1 | MI
MI
MI
MI | 4.8
6.3
3.9 | 2 2 2 | MI
MI
MI | 0.2 MI
0.2 MI
0.2 MI
0.2 MI | | | 06
06
06
07
07 | SHAL W | MJ9339
MJ9340
MJ9342
MJ9343
MJ9344 | 821018
821103
821014 | 1100
1100
1415 | 57
114
2800
220
90 | 176
 262
 190
 57
 330 | 10
 10 k | MI
MI
I | 20
20 | MI
MI | 1 | MI
MI | 2.8
2.2
5.2
2.2 | 2 2 | MI | 0.2 MI
0.2 MI | | | 07
07
08
08
08 | SHAL W | MJ9345
MJ9348
MJ9349
MJ9350
MJ9051 | 821103
821025
821025 | 1430
1410
1425 | 66
3200
260
50
33 | 210
 700
 640
 36
 40 |
 6400
 69
 170
 140 | | | 1 | | 1 | 1.9 | | | | | | 08
09
09
09 | 3 S
6 S
9 S | MJ9054
MJ9055
MJ9056
MJ9057
MJ9058 | 821019
821019
821019 | 1020
1030
1040 | | 1 2800
 41
 390
 280
 190 | 3400

 16
 17 | 1 | | | 1.4 | 1 | 2.2 | | | | | | 09
10
10 | SHAL W | MJ9060
MJ9061
MJ9062
MJ9063 | 821103
821019
821019 | 1500
1235
1250 | | 1 1500
1 610
1 2600
1 1500 | 18 k
 16
 74
 62 | | | 1 | | | 3.4
1.9
2.2 | | 1 | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | TATION DESCRIPTION | | WELL
DEPTH N | ITR
M NUM | DATE | TIME | MN* | ZN | ١ | M E
B | T A | L S | Р | A R A | ME | T E R S
AS | SB | | SE | |--------------------|------|-----------------|------------------|--------|------|-------|-------|---|----------|-----|-------|-----|-------|-----|---------------|-----|-----|-----| | | 10 | 12 9 | MJ9064 | 821019 | 1340 | 135 | 13100 | | 1 145 | |
I | | | | 6.8 | | | | | | 10 | | MJ9065 | | | 60 | 11400 | | 1 65 | | i | i | | i | 1.8 | | i | | | | 10 | SHAL V | W MJ9066 | 821104 | 1000 | 290 K | | K | 1 110 | K | 1 | ĺ | | i | 21 1 | | i | | | | 11 | | MJ9067 | | | 1.5 M | 11 72 | | 1 80 | | 20 | MI | - 1 | MI | I MI | 2 | Mİ | 0.2 | | | 1.1 | 6 9 | MJ9068 | 821008 | 1115 | 3.1 | 1 180 | | 1 41 | | 20 | MI | 1 | MI | I MI | 2 | MI | 0.2 | | | 11 | 8 9 | MJ9069 | 821008 | 1130 | 3.6 | 1 150 | | 37 | | 20 | MI | - 1 | MI | I MI | 2 | MI | 0.2 | | | 11 | 10 9 | MJ9070 | 821008 | 1145 | 8.5 | 11200 | | 52 | | 20 | MI | 1 | MI | 5.6 | 2 | MI | 0.2 | | | 11 | | MJ9071 | | | 26 | 1 410 | | 37 | | 20 | MI | 1 | MI | I MI | 2 | MI | 0.2 | | | 11 | | MJ9072 | | | 475 K | | K | 14 | K | | ! | | 1 | 22 | | - 1 | | | | 12 | | MJ9078 | | | 480 K | | K | | K | | . ! | | ! | 20 | | - 1 | | | | 12 | | MJ9079
MJ9080 | | | 250 | 340 | | 1 120 | | | - 1 | | 1 | ! | | - 4 | | | | 12 | | MJ9081 | | | 10.6 | 93 | | 96 | | | 1 | | 1 | ! | | 1 | | | | 12 | | MJ9082 | | | 210 | 1 117 | | 1 130 | | | 1 | | - ! | | | ! | | | | 12 | | MJ9083 | | | 104 | 1 91 | | 1 140 | | | 1 | | 1 | ! | | ļ | | | | 12 | | MJ9084 | | | 4000 | 18400 | | 1 140 | | | 1 | | 1 | | | 1. | | | | 13 | | MJ9085 | | | | 360 | | 1 117 | | | 1 | | - 1 | | | 1 | | | | 13 | | MJ9086 | | | 36 | 96 | | 93 | | | 1 | | 1 | 1 | | 1 | | | | 13 | | MJ9087 | | | 160 | 61 | | 94 | | | 1 | | - 1 | ! | | 1 | | | | 13 | | MJ9090 | | | 960 | 1 01 | | 11300 | - 1 | | 1 | | - 1 | 1 | | 1 | | | | 14 | 3 9 | MJ9091 | 821020 | 0945 | | 11700 | | 80 | | | 1 | | 1 | 2 2 1 | | - 1 | | | | 14 | | MJ9092 | | | 240 | 700 | | 1 16 | i | | 1 | | - 1 | 2.2 | | 1 | | | | 14 | | MJ9093 | | | 150 | 1 440 | | 1 16 | 1 | | . 1 | | 1 | 1.3 | | 1 | | | | 14 | | MJ9094 | | | 96 | 730 | | 1 17 | i | | i | | 1 | 1.6 | | 1 | | | | 14 | 15 S | MJ9095 | 821020 | 1145 | 98 | 11040 | | 1 15 | i | | i | | 1 | 3.0 | | 1 | | | | 14 | | MJ9096 | | | | 1 380 | K | | K | | i | | 1 | 18 | | - 1 | | | | 15 | | MJ9097 | | | | 13800 | | 1 115 | 1 | | i | | 1 | 10 | | i | | | | 15 | | MJ9098 | | | | 16800 | | 1 210 | i | 76 | i | | i | 5.8 | | i | 1.8 | | | 15 | | MJ9099 | | | 1260 | 19100 | | 1 240 | i | 76 | i | | i | 5.4 | | i | 1.4 | | | 15 | | MJ9102 | | | 530 | 1 260 | | 1 10 | KI | | i | | i | 1 | | i | 1.4 | | | 16 | 3 S | MJ9103 | 821020 | 1310 | 13 | 1 210 | | 1 12 | 1 | | i | | i | 102 | | i | | | | 16 | 6 S | MJ9104 | 821020 | 1325 | 87 | 1 130 | | 1 29 | 1 | | 1 | | i | 15 | 28 | i | | | | 16 | 9 S | MJ9105 | 821020 | 1345 | 300 | 1 240 | | 1 70 | 1 | | 1 | | 1 | 3.0 | | i | | | | 16 | | MJ9106 | | | 96 | 234 | | 56 | 1 | | 1 | | 1 | 3.1 1 | 3.4 | i | | | | 16 | | MJ9107 | | | 21 | 1 105 | | 1 27 | 1 | | 1 | | | 3.7 | | i | | | | 16 | SHAL W | MJ9108 | 821104 | 1100 | 21 K | 64 | K | 1 33 | KI | | 1 | | 1 | 11 1 | | 1 | | | | 17 | | MJ9109 | | | 110 | 11100 | | 1 18 | 1 | | - 1 | | 1 | 1 | | İ | | | | 17 | | MJ9110 | | | 111 | 11600 | | 52 | 1 | | 1 | | 1 | 1 | | 1 | | | | 17 | | MJ9111 | | | 113 | 11900 | | 1 40 | 1 | | 1 | | 1 | 4.4 | | - Î | | | | . 17 | | MJ9112 | | | | 11000 | | 1 16 | 1 | | 1 | | 1 | 2.0 | | 1 | | | | 17 | | MJ9113 | | | | 11190 | | 1 24 | 1 | | 1 | | 1 | 1 | | 1 | | | | 17 | | MJ9114 | | | | 11370 | | 26 | 1 | | 1 | | - 1 | 1 | | 1 | | | | 17 | | MJ9116 | | | | 11030 | | 23 | 1 | | 1 | | - 1 | 1 | | - 1 | | | | 17 | | MJ9117 | | | 162 | 400 | | | 1 | | - 1 | | 1. | 1 | | 1 | | | | 17 | 215 | MJ9118 | 021013 | 1405 | 109 | 169 | | | - 1 | | - 1 | | | 1 | | 1 | | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STA | TION DESCRIPTION | | WELL
DEPTH M | ITR
I NUM | DATE | TIME | MM | 1* | ZN | M E
B [†] | | V* | A R A M E | TERS | SB | SE | |-----|------------------|----------|-----------------|------------------|-----------------------|------|-----------|----|---------|-----------------------|-----|-----|-----------|------|--------------|-------| | | | 17 | | MJ8042 | | | 410 | | | | KI | 1 | | 32 | 1 | | | | | 17 | | MJ9120 | | | 210 | K | | 18400 | | | 1 | | | 1 | | | | 18 | | MJ9121 | | | 85 | | 13300 | 1 110 | | | | | 1 | 1 | | | | 18 | | MJ9122 | | | 62 | | 7000 | 1 150 | | | | | | 1 | | | | 18
18 | | MJ9123 | | | 59 | | 12700 | 1 140 | . ! | | | | | 1 | | | | 19 | | MJ9126
MJ9127 | | | | | | 13300 | | | 1 | | | 1 | | | | 19 | | MJ9128 | | | 76 | | 11200 | 84 | | | | | | 1 | | | | 19 | | MJ9129 | | | 77
146 | | 1 430 | 1 72 | 1 | | | | | | | | | 19 | | MJ9130 | | | 62 | | 1 860 | 1 58 | | | | | ! | 1 | | | | 19 | | MJ9132 | | | 10 | K | | 14400 | 1 | | | | | | | | | 20 | | MJ9133 | | | 330 | 11 | 1 13.3K | | 1 | 1 | | | 1 | | | | | 20 | | MJ9134 | | | 61 | | 11750 | i | i | | 1 | 3.8 | 200 | | | | | 20 | | MJ9135 | | | 38 | | 11300 | i | i | | i | 1.3 | The state of | | | | | 20 | | MJ9136 | | | 92 | | 12100 | i | i | | i | 1.8 | | | | | | 20 | 15 S | MJ9137 | 821021 | 1120 | 78 | | 1 360 | i | i | i | i | 1.4 | | i | | | | 20 | | MJ9138 |
| | 21 | K | I II K | 12600 | - 1 | 1 | 1 | | | i | | | | 21 | | MJ9139 | | | 1550 | | 1 40.5K | | - 1 | - 1 | 1 | 6.5 | 6.7 | İ | | | | 21 | | MJ9140 | | | 560 | | 1 10.9K | | | | 1 | 2.6 | | 1 | | | | 21 | | MJ9141 | | | 340 | | 16500 | 1 22 | 1 | | | 7.6 | | 1 | | | | 21 | | MJ9142 | | | 100 | | 1 460 | 1 | 1 | | | 2.9 | | | | | | 21 | | MJ9143 | | | 64 | | 312 | 11200 | 1 | | | 1.5 | | | | | | 22 | | MJ9144 | | | 870 | | 1 390 | 11200 | 1 | 1 | | 10 | 170 | 1 | | | | 22 | | MJ9146 | | | | | 15700 | 1 38 | 1 | | 1 | 19 | 130 | 70 5 | | | | 22 | | MJ9147 | | | | | 1 11.2K | | 1 | 4. | | 13.1 | 1 69 | 30.5 | | | | 22 | | MJ9148 | | | 910 | | 12900 | 1 | i | i | i | | 11.3 | | | | | 22 | | MJ9149 | | | | | 350 | 1 | i | i | i | | 11.5 | | | | | 22 | SHAL W | MJ9150 | 821110 | 1200 | 5300 | | 12000 | 11800 | i | i | i | | | i | | | | 22 | DEEP W | MJ9156 | 821110 | 1300 | 45 | K | 1 30 K | 12600 | 1 | i | | 32 | 26 | 4.1 | | | | 23 | | MJ9157 | | | 1200 | | 12000 | 1 109 | - 1 | 1 | 1 | | | | | | | 23 | | MJ9158 | | | 380 | | 11400 | 1 130 | - 1 | 1 | - 1 | | | | | | | 23 | | MJ9159 | | | 280 | | 520 | 1 160 | - 1 | 1 | 1 | | | 1 | | | | 23 | | MJ9162 | | | | | 240 | 19800 | 1 | | 1 | 11 | | | | | | 24 | | MJ9163 | | | 530 | | 60 | 94 | 1 | | 1 | | nt negati | | | | | 24 | | MJ9164 | | | 390 | | 1 120 | 41 | 1 | i | | 2.2 | | | | | | 24
24 | 100 | MJ9165 | | | 130 | | 43 | 37 | 1 | ! | | 1.4 | | | | | | 24 | | MJ9166
MJ9167 | | | 240 | | 1 52 | 1 48 | - 1 | 1 | 1 | 3.6 | | | | | | 24 | | MJ9168 | | | 96 | | 1 14 | 800 | 1 | 1 | 1 | | | | | | | 25 | | MJ9169 | | | 33 | | 560 | 1 87 | 1 | 1 | 1 | | | | | | | 25 | | MJ9170 | | | 121 | | 1 210 | 1 160 | 1 | 1 | | | | | | | | 25 | | MJ9171 | | | 89 | | 290 | 1 170 | i | i | | | | | | | | 25 | | MJ9174 | and the second second | | | | 23 | 12000 | 1 | i | 1 | | | | | | | 25 | | MJ9180 | | | | | 1 160 | 740 | 1 | i | i | 100 | | 11111 | | | | 26 | | MJ9181 | | | 38 | | 1 6 | 1 120 | i | i | i | | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL | M | ITR
NUM | DATE | TIME | MM | * | ZN | M E | | L S
V* | P | A R A I | M E | T E R S | SB | | SE | |---------------------|----|------|---|------------|--------|------|------|------|---------|-------|-----|-----------|-----|---------|-----|---------|-----|-----|-------| | | 26 | 6 | S | MJ9182 | 821026 | 1440 | 170 | | 240 | 1 118 | | | | | | | | '- | | | | 26 | 9 | S | MJ9183 | 821026 | 1450 | 140 | | 11800 | 1 124 | | | 1 | | - 1 | 1 | | | | | | 26 | SHAL | W | MJ9186 | 821111 | 1230 | 6300 | | 1 34 K | | 100 | | i | | - i | - 1 | | - 1 | | | | 27 | SHAL | W | MJ8046 | 821116 | 1100 | 12 | K | 1 94 K | 14800 | | | - 1 | 45 | - 1 | 25 | | - ! | | | | 28 | SHAL | W | MJ8047 | 821116 | 1230 | 43 | K | 1 510 K | 64 | K | | i | 45 | - 1 | 25 | | 1 | | | | 29 | SHAL | W | MJ8045 | 821115 | 1300 | 33 | K | I 350 K | 1 20 | K | | - 1 | 19 | - 1 | 20 | | - 1 | | | | 30 | SHAL | W | MJ8033 | 821220 | 1100 | 1200 | | 1 32 | 11200 | 1 | | - 1 | 19 | 1 | | | 1 | | | BERM #1 | | - 1 | S | MJ9187 | 821025 | 1000 | 1500 | | 1 510 | 1 104 | - 1 | | - 1 | | - 1 | ! | | 1 | | | BERM #2 | | | | MJ9188 | | | 920 | | 11700 | 1 98 | | | - 1 | | - 1 | 1 | | - 1 | | | BERM #3 | | | | MJ9189 | | | 850 | | 12900 | 1 100 | - 1 | | - 1 | | - 1 | | | ! | | | BERM #4 | | | | MJ9190 | | | 1080 | | 1 13.3K | 1 160 | | | - 1 | | - 1 | 1 | | 1 | | | BERM #5 | | | | MJ9191 | | | 850 | | 17800 | 1 102 | 1 | | - 1 | | - ! | - ! | | ! | 1.0 | | SERM #6 | | - 1 | | MJ9192 | | | 880 | | 11200 | 1 110 | 1 | | . 1 | | | - 254 | | ! | | | BERM #7 | | 1 | | MJ9193 | | | | | 1 16 K | | 1 | | 1 | | 1 | | | | | | BERM #8 | | 1 | S | MJ9194 | 821025 | 1145 | 82 | | 1 540 | 1 170 | - ! | 1.40 | - ! | | ! | 2.4 | | 1 | 0.9 | | BERM #9 | | | | MJ9195 | | | 48 | | 11190 | | - ! | 140 | 1 | | 1 | | | - 1 | | | SLANK | | | | MJ9197 | | 1200 | 1. | 5 N | | 1 170 | ! | 76 | | | | | | - 1 | | | RILLER'S WATER | | | | MJ9199 | | | 1. | יו כ | | 1 28 | . ! | 20 | MI | - 1 | MI | I MI | 2 | MI | 0.2 M | | EA GRAVEL | | | | MJ9198 | | | 10 | | 1.7 | ! | 1 | | - 1 | | 1 | 1 | | - 1 | | | S#2 | | | | MJ9328 | | OCEO | 10 | | 23 | | | | - 1 | | 1 | 1 | | 1 | | | S#3 | | 0 | 0 | MJ9329 | 021110 | 0952 | 550 | | 16200 | 60 | 1 | | - 1 | | 1 | 16 | 34 | 1 | | | S#4 | | 0 | 0 | MJ9329 | 021118 | 0956 | 180 | | 27.6K | 61 | 1 | | . 1 | | 1 | 5.8 | | 1 | | | S#5 | | 0 | 0 | MJ9335 | 821118 | 1002 | 260 | | 16800 | 54 | - 1 | | - | | 1 | 38 | 98 | 1 | | | S#6 | | | | MJ9341 | | | 2600 | | 1 81 K | 1 88 | - 1 | | 1 | 6.1 | 1 | 17 1 | 6.0 | i | | | S#7 | | | | MJ9346 | | | 400 | | 11400 | 1 61 | - 1 | | 1 | | 1 | 1 | | i | | | | | | | MJ9347 | | | 740 | | 12000 | 1 60 | - 1 | | 1 | | 1 | i | | i | | | S#8 | | | | MJ9059 | | | 530 | | 14700 | 1 53 | 1 | | 1 | | 1 | 8.5 | | i | | | S#9 | | | | MJ9073 | | | 600 | | 1 330 | 1 54 | ĺ | | Ĺ | | i | 1.3 | | - 1 | | | S#10 | | 0 | S | MJ9074 | 821118 | 1048 | 620 | | 1 820 | 47 | i | | i | | i | 2.0 | 9.5 | - 1 | | | S#11 | | | | MJ9075 | | | 160 | | 1 760 | 1 45 | i | | i | | i | 2.0 | 2.7 | | | | S#12 | | | | MJ9076 | | | 550 | | 12400 | 90 | i | | i | | i | 4.3 | 4.5 | 1 | | | RANSFER BLANK | | | W | MJ8043 | 821101 | 1100 | | | 1 140 | 540 | i | | i | | i | ١ ٠٠٠ | 4.5 | 1 | | | RANSPORT BLANK | | | W | MJ8044 | 821101 | 1100 | | | 1 | 540 | i | | i | | i | 1 | | 1 | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION NUM DEPTH M NUM DATE TIME TL HG SN* CD PB | PHENOLIC CN | |---|-------------| | 01 3 S MJ9301 821007 0900 I MI 0.02MI 2 MI 0.85 I 9.8 | | | 01 6 S MJ9302 821007 0915 M 0.02M 2 M 8.2 4.9 | 1 5.8 | | 01 9 S MJ9303 821007 0930 M 0.02M 2 M 23 1.5 | 1 20 1 | | 01 | 1 9.2 1 | | 01 SHAL W MJ9312 821108 1330 0.2 | 9.2 | | 01 DEEP W MJ9311 821108 1400 0.63 | | | 02 3 S MJ9313 821014 1025 1 1 1.03 46 | 1 77 | | 02 6 S MJ9314 821014 1030 0.38 2.3 | 3.7 | | 000 000 110715 001011 1075 | | | 02 12 6 14 16 7 1 6 00 10 1 4 10 10 | | | 02 | | | 02 SHAL W MJ9318 821102 1100 0.33 25 | 1 17 | | 07 7 0 14 107 10 001014 1155 | 1 13 1 | | | | | 07 0 0 110701 001011 1010 | | | 07 CHAL H H10704 COLLEGE 1000 | 1 11100 | | 04 7 0 11 10 70 5 00 10 10 1 11 5 11 11 1 11 | 1 14400 1 | | | 1 22 1 | | Of C MIOZOZ COLOLO 1475 | I I MI | | | I I MI | | 05 7 0 1/10771 00/10/0 1770 | | | | I I MI | | 0.0211 2 111 49 | 1 2.2 1 | | 05 9 \$ MJ9333 821018 1330 MI 0.02MI 2 MI 7.3 66 | 1 1.1 1 | | 05 | I I MI | | 05 SHAL W MJ9336 821103 1400 0.28 160 | 1 35 K I | | 06 3 S MJ9337 821018 1035 MI 0.02MI 2 MI 0.33 20 | 1 10.1 1 | | 06 6 S MJ9338 821018 1045 MI 0.02MI 2 MI 5.2 20 | I I MI | | 06 9 \$ MJ9339 821018 1050 MI 0.02MI 2 MI 6.0 10.9 | I I MI | | 06 12 S MJ9340 821018 1100 MI 0.02MI 2 MI 28 0.5 I | MI 3.8 | | 06 SHAL W MJ9342 821103 1100 0.43 85 | | | 07 3 S MJ9343 821014 1415 2.9 0.51 19 | | | 07 6 S MJ9344 821014 1425 3.4 22 3.5 | | | 07 9 S MJ9345 821014 1430 3.2 9.2 1.11 | | | 07 SHAL W MJ9348 821103 1430 0.78 120 | 1 13 1 | | 08 3 S MJ9349 821025 1410 0.03 3.8 130 | | | 08 SHAL W MJ9054 821108 1500 0.38 175 | 1 1 1 | | 09 3 S MJ9055 821019 1020 1.5 | 1 1 1 | | 09 6 S MJ9056 821019 1030 1 7.0 2.4 | 1 1 1 | | 09 9 S MJ9057 821019 1040 4.1 1.6 | 1 1 | | 09 12 S MJ9058 821019 1045 2.6 11.6 | 1 2.7 1 | | 09 SHAL W MJ9060 821103 1500 0.23 130 | 1 11900 1 | | 10 3 S MJ9061 821019 1235 22 49 | 1 1 1 | | 10 6 S MJ9062 821019 1250 39 | i i 5.0 i | | 10 9 S MJ9063 821019 1310 1 25 18 | 1 1 1 | | 10 12 S MJ9064 821019 1340 52 1.53 | i 6.0 i | | 10 | 1 6.2 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL
DEPTH | ITR
M NUM | DATE | TIME | | ET | A L S
HG | PAF
SN* | | R S | PHENOLIC | CN CN | |---------------------|----|---------------|----------------------|--------|------|---|------|-------------|------------|---------|---------|----------|----------| | | 10 | | W MJ9066 | | | | ! | 0.43 | | I 60 K | 1 620 | ! | 1 830 | | | 11 | | S MJ9067 | | | | MI | 0.02MI | | MI 0.35 | | ! | 1 16 1 | | | 11 | | S MJ9068
S MJ9069 | | | | MI | 0.02MI | _ | MI 2.0 | 6.7 | 1 | 1 12.2 1 | | | 11 | | S MJ9009 | | | | M I | 0.36 | | MI 1.24 | | 1 | 6.6 | | | 11 | | S MJ9071 | | | | MI | 0.02MI | 2 | MI 6.5 | 23 | 1 | 1 11.7 | | | ii | | W MJ9072 | | | | 1-11 | 1.28 | 2 | 14800 | 1 280 | - | 1 22 1 | | | ii | | W MJ9078 | | | | i | 0.43 | | 13900 | 11100 | | 36 | | | 12 | | S MJ9079 | | | | i | 0.45 | | 2.1 | 1 22 | | 1 00 1 | | | 12 | | S MJ9081 | | | | i | | | 5.1 | 8.4 | i | i | | | 12 | | S MJ9082 | | | | i | i | | 1 22 | 1 | i | i i | | | 12 | 15 | S MJ9083 | 821025 | 1240 | | - 1 | 1 | | 1 8.4 | i | 1 | i i | | | 12 | | W MJ9084 | | | | 1 | 0.28 | | 1 210 | 1 | İ | i i | | | 13 | 3 | S MJ9085 | 821027 | 1310 | | 1 | - 1 | | 1 5.1 | 1 12.1 | 1 | 5.1 | | | 13 | | S MJ9086 | | | | 1 | - 1 | | 1 1.18 | 1 2.8 | 1 | 1 1.6 1 | | | 13 | | S MJ9087 | | | | - 1 | | | 1 | 1.2 | 1 | 3.6 | | | 14 | | S MJ9091 | | | | | | | 1 15 | 340 | 1 . | 1 | | | 14 | | S MJ9092 | | | | 1 | | | 1 4.8 | 76 | 1 | 2.3 | | | 14 | | S MJ9093 | | | | (5) | 0.04 | | 7.1 | 5.2 | 1 | 3.5 | | | 14 | | S MJ9094 | | | * | | 0.03 | | 9.5 | 1 12.5 | | 4.8 | | | 14 | | S MJ9095 | | | | - 1 | 0.03 | | 9.6 | 29 | | 1 | | | 14 | | W MJ9096 | | | | 1 | 0.53 | | 1 12 K | | 1 | 1 41 1 | | | 15 | | S MJ9097 | | | | 1 | | | 8.3 | 1 72 | 1 | | | | 15 | | S MJ9098
S MJ9099 | | | | - 1 | 0.06 | | 1 170 | 11500 | | 55.6 | | | 15 | | W MJ9102 | | | | | 0.06 | | 1 200 | 4800 | | 5.4 |
 | 16 | | S MJ9103 | | | | | 0.03 | | 1 20 | 1 84 K | | 11200 | | | 16 | | S MJ9104 | | | | i | 0.05 | | 1 20 | 1 141 K | | 2.2 | | | 16 | | S MJ9105 | | | | i | 0.04 | | 6.9 | 1 850 | 1 | 1 2.2 1 | | | 16 | | S MJ9106 | | | | i | 0.04 | | | 15200 | 1 | 1 | | | 16 | | S MJ9107 | | | | i | i | | | 1 232 | i | 1 | | | 16 | | W MJ9108 | | | | i | 0.43 | | 1 580 | 1 470 | i | 450 | | | 17 | | S MJ9109 | | | | i | | | 8.3 | 1 200 | 1 | 7.1 | | | 17 | | S MJ9110 | | | | i | 1000 | | 1 18 | 1 190 | i | 1 1.8 1 | | | 17 | 9 | S MJ9111 | 821011 | 1150 | | 1 | 1 | | 1 13.6 | 1 87 | i | i i | | | 17 | 12 | S MJ9112 | 821011 | 1230 | | -1 | | | 1 8.0 | 1 39 | 1 | 2.7 | | | 17 | 15 | S MJ9113 | 821011 | 1300 | | - 1 | 1 | | 1 12.8 | 1 42 | 1 | 1 2.6 | | | 17 | 18 | S MJ9114 | 821013 | 1330 | | 1 | 0.367 | | 1 11.5 | 1 167 | 1 | 9.0 | | | 17 | | S MJ9116 | | | | 1 | 1 | | 1 11.1 | 1 82 | 1 | 1 5.1 1 | | | 17 | | S MJ9117 | | | | 1 | 1 | | 3.4 | 1 53 | 1 | 1 2.2 | | | 17 | | S MJ9118 | | | | 1 | | | 1 2.5 | 1 27 | | 5.5 | | | 17 | | S MJ9119 | | | | 1 | | | 2.5 | 1 41 | | 1 | | | 17 | | W MJ8042 | | | | - 1 | 0.83 | | 14500 | 11600 | 1 | 92 | | | 17 | | W MJ9120 | | | | 1 | 0.83 | | 1 800 | 1 210 | | 1 | | | 18 | | S MJ9121 | | | | 1 | 0.03 | | | 11130 | | 1 | | | 18 | 6 | S MJ9122 | 821026 | 1020 | | 1 | 0.02 | | 3.1 | 14500 | 1 | 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | STATION DESCRIPTION | | WELL
DEPTH | ITR
M NUM | DATE | TIME | M E | T A L S
HG | PAR
SN* | A M E T E | R S | PHENOLIC | CN | |---------------------|----------|---------------|--------------|--------|------|-----|---------------|-------------|-----------|----------|----------|------| | | 18 | | S MJ9123 | | | | 0.04 | | 1 4.3 | 1 630 | | | | | 18 | | W MJ9126 | | | | | | | 1 110 | İ | i . | | | 19 | | S MJ9127 | | | - 1 | | | 8.9 | 1 1.24 | 1 | 3.4 | | | 19 | | S MJ9128 | | | - 1 | | digital and | 8.2 | 1 | 1 | | | | 19 | | S MJ9129 | | | | - 1 | 1 7 7 5 | 0.64 | 1 1.01 | 1 | 1.7 | | | 19 | 12 | S MJ9130 | 821027 | 1120 | - 1 | - 1 | | 1 2.0 | 1 2.4 | 1 | | | | 19 | SHAL | W MJ9132 | 821101 | 1600 | 9.5 | - 1 | | 290 | 1 | 1 | | | | 20 | 3 | S MJ9133 | 821021 | 0940 | | 1 | | 1 58 | 11900 | 1 | 1000 | | | 20 | | S MJ9134 | | | - 1 | 1 | | 1 8.4 | 1 240 | 1 | | | | 20 | 9 | S MJ9135 | 821021 | 1030 | 1 | 1 | | 1 13 | 1 67 | 1 | | | | 20 | 12 | S MJ9136 | 821021 | 1055 | 1 | - 1 | | 4.9 | 1 190 | 1 | 2 | | | 20 | | S MJ9137 | | | - 1 | 1 | | 1 1.25 | 1 32 | 1 | | | | 20 | SHAL | W MJ9138 | 821104 | 1330 | - 1 | 0.38 | | 1 100 | 1 280 | 1 | 70 | | | 21 | 3 | S MJ9139 | 821021 | 1400 | - 1 | - 1 | 7.6 | 226 | 16400 | 1 | | | | 21 | | S MJ9140 | | | | 1 | 3.0 | 63 | 11800 | 1 1 | | | | 21 | | S MJ9141 | | | 1 | | | 38 | 11010 | 1 | | | | 21 | | S MJ9142 | | | | | | 2.5 | 1 28 | 1 1 | | | | 21 | | S MJ9143 | | | | 1 | | 1.8 | 1 50 | 1 | No. | | | 21 | SHAL | W MJ9144 | 821105 | 1030 | 1 | 0.28 | | | 1 | 1 | | | | 22 | | S MJ9145 | | | | | 6.4 | 79 | 1 16 K | 1 | 3.4 | | | 22 | | S MJ9146 | | | | | 7.4 | 134 | 1 12 K | 1 | 22.6 | | | 22 | | S MJ9147 | | | | | 10.0 | 402 | 24.8K | 1 | 179 | | | 22 | | S MJ9148 | | | | | | 93 | 15600 | | 113 | | | 22 | | S MJ9149 | | | ! | | | 10.6 | | 1 1 | 5.3 | | | 22 | | W MJ9150 | | | | 15 | | 18 | 250 | 1 1 | 360 | | | 23 | | W MJ9156 | | | 1 | 46 | | 77 | | | 36 | | | 23 | | S MJ9157 | | | | 0.02 | | 8.9 | 45.6K | | | | | | 0 | S MJ9158 | 821026 | 1150 | | 0.02 | | 16 | 480 | 1 1 | 8.5 | | | 23 | CHAL I | S MJ9159 | 821026 | 1200 | ! | 0.02 | | 7.6 | 1 121 | 1 | | | | 23
24 | SHAL | W MJ9162 | 821026 | 1430 | | 1 | | | 1 430 | 1 | | | | 24 | 2 : | S MJ9163 | 821022 | 0950 | | | | 0.59 | 111 | 1 | | | | 24 | | S MJ9164 | | | | | | 0.86 | 1 44 | 1 | | | | | | S MJ9165 | | | | 0.04 | | 0.29 | 1 11.3 | 1 1 | 3.6 | | | 24 | | S MJ9166 | | | | 1 | | 0.31 | | 1 | | | | 24 | | MJ9167 | | | ! | | 400 | | 2.0 | 1 | 3.6 | | | 24 | | MJ9168 | | | ! | 0.58 | 0.1 | | | 1 1 | 19 | | | 25 | | S MJ9170 | | | ! | 0.05 | | | 1 13.0 | 1 1 | | | | 25 | 9 ; | MJ9171 | 821026 | 1440 | ! | | | | 1 66 | | | | | 25 | | MJ9180 | | | | 0.58 | 1 | | | 1 | | | | 26 | | MJ9181 | | | | | | 2.9 | 1 13 | 1 | | | | 26 | | MJ9182 | | | 1 | 1 | 1 | | 1 20 | | 3.9 | | | 26 | | 6 MJ9183 | | | 1 | - 1 | - 1 | 1.8 | 96 | | | | | 26 | | V MJ9186 | | | - 1 | 1 | - 1 | 10 | 1 | 1 | | | | 27 | | MJ8046 | | | 1 | 1 | 1 | 320 | 1 | 1 | 43 | | | 28 | | MJ8047 | | | - 1 | 5 - 55 d | 1 | 5600 | 6.5 | l i | 920 | | | 29 | SHAL V | MJ8045 | 821115 | 1300 | 1 | 1 | | 76 | Titles - | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT | | WELL | M | ITR
NUM | DATE | TIME | M | 1 E T | A L S
HG | PARA
SN* | M E T E | | PHENOL IC | CN | |----|------|-----------|---|-----------------|----------------------|---|--|---|---|---|---|---|--| | 30 | SHAL | | | | | | - 1 | 0.31 | ı | | 1 21 | 1 | | | | 1 | | | | 1000 | | - 1 | 1 | | 13 | 220 | - 1 | - 1 | | | 1 | | | | 1015 | | 1 | 1 | 1 | 8.6 | 470 | 1 | 1 | | | 1 | S | MJ9189 | 821025 | 1030 | | - 1 | 1 | - 1 | 17 | 13300 | 1 | | | | 1 | S | MJ9190 | 821025 | 1045 | | 1 | 0.04 | 1 | 49 | 11090 | 1 | 1 | | | - 1 | S | MJ9191 | 821025 | 1100 | | - 1 | 1 | | 30 | 13000 | 1 | 1 | | | - 1 | S | MJ9192 | 821025 | 1115 | | 1 | 0.03 | 1 | 5.7 | 770 | 1 | 1 | | | - 1 | S | MJ9193 | 821025 | 1130 | | 1 | 0.06 | - 1 | 71 | 15100 | 1 | i | | | 1 | S | MJ9194 | 821025 | 1145 | | - 1 | 0.14 | 1 | 14 | 230 | 1 | i | | | - 1 | S | MJ9195 | 821025 | 1200 | | 1 | 1 | 1 | 22 | 1 170 | i | i | | | | S | MJ9197 | 821008 | | 1 | MI | 0.02MI | 2 MI | 0.1 M | | i | I MI | | | | W | MJ9199 | 821012 | | | 1 | 1 | 1 | 0.17 | 1 1 | i | 1 | | | | S | MJ9198 | 821012 | | | i | i | i | | i i | i | 3.6 | | | 0 | | | | 0952 | | i | i | 10.3 | | i 10.3K i | i | 4.1 | | | | | | | | | i | i | 10.5 | | | i | 7.1 | | | | | | | | | i
 i | i | | | i | 1.5 | | | | | | | | | i | i | 10 1 | | 1 17 K I | - 1 | 1.0 | | | | | | | | | i | i | | | 1 450 | 1 | 8.4 | | | | _ | | | | | 1 | i | 5.2 | | | 1 | 0.4 | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | i | i | ; | 9 750 | | | | | | | - | | | | | · i | 1 | 1 | | | | 121 | | | | | | | | | | 1 | 1 | | | | 1.2 | | | | - | | | | | - 1 | 1 | 1 | | | 1 | 13
15 | | | NUM | NUM DEPTH | NUM DEPTH M 30 SHAL W 1 S 1 S 1 S 1 S 1 S 1 S 1 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 | NUM DEPTH M NUM | NUM DEPTH M NUM DATE | NUM DEPTH M NUM DATE TIME 30 SHAL W MJ8033 821220 1100 | NUM DEPTH M NUM DATE TIME TL 30 SHAL W MJ8033 821220 1100 | NUM DEPTH M NUM DATE TIME TL 30 SHAL W MJ8033 821220 1100 S MJ9187 821025 1000 S MJ9188 821025 1015 S MJ9189 821025 1015 S MJ9199 821025 1045 S MJ9191 821025 1100 S MJ9192 821025 1115 S MJ9193 821025 1115 S MJ9194 821025 1115 S MJ9195 821025 1200 S MJ9197 821025 1200 S MJ9197 821008 MI W MJ9199 821012 S MJ9199 821012 S MJ9198 821012 S MJ9199 821012 S MJ9199 821012 S MJ9328 821118 0956 O S MJ9335 821118 1002 O S MJ9341 821118 1008 O S MJ9347 821118 1006 O S MJ9347 821118 1036 O S MJ9073 821118 1044 O S MJ9073 821118 1048 O S MJ9075 821118 1048 | NUM DEPTH M NUM DATE TIME TL HG 30 SHAL W MJ8033 821220 1100 | NUM DEPTH M NUM DATE TIME TL HG SN* 30 SHAL W MJ8033 821220 1100 | NUM DEPTH M NUM DATE TIME TL HG SN* CD 30 SHAL W MJ8033 821220 1100 0.31 I S MJ9187 821025 1000 13 I S MJ9188 821025 1015 8.6 I S MJ9189 821025 1030 17 I S MJ9190 821025 1045 0.04 49 I S MJ9191 821025 1100 30 I S MJ9192 821025 1115 0.03 5.7 I S MJ9193 821025 1130 0.06 71 I S MJ9194 821025 1145 0.14 14 I S MJ9195 821025 1200 22 S MJ9197 821008 I MI 0.02M 2 MI 0.1 M W MJ9199 821012 0.17 S MJ9198 821012 0.67 O S MJ9328 821118 0952 10.3 50 O S MJ9335 821118 1002 30 O S MJ9341 82118 1002 30 O S MJ9347 82118 1006 19 420 O S MJ9347 82118 1036 6.8 O S MJ9059 82118 1041 16 O S MJ9073 82118 1044 16 O S MJ9073 821118 1048 4.3 O S MJ9075 821118 1048 4.3 O S MJ9075 821118 1048 4.3 | NUM DEPTH M NUM DATE TIME TL HG SN* CD PB 30 SHAL W MJ8033 821220 1100 0.31 21 S MJ9187 821025 1000 13 220 S MJ9188 821025 1015 8.6 470 S MJ9189 821025 1030 17 13300 S MJ9190 821025 1045 0.04 49 1090 S MJ9191 821025 1100 30 3000 S MJ9192 821025 1115 0.03 5.7 770 S MJ9193 821025 1130 0.06 71 15100 S MJ9194 821025 1145 0.14 14 230 S MJ9195 821025 1200 22 170 S MJ9197 821008 M 0.02M 2 M 0.1 M 0.5 M W MJ9198 821012 0.67 S MJ9328 821118 0952 10.3 50 10.3K O S MJ9325 82118 1002 30 31 K O S MJ9341 82118 1008 19 420 17 K O S MJ9346 82118 1027 3.2 6.1 450 O S MJ9347 821118 1036 6.8 660 O S MJ9073 82118 1044 16 16 120 O S MJ9075 821118 1048 4.3 15900 1049 1.7 190 | NUM DEPTH M NUM DATE TIME TL HG SN* CD PB PHENOLIC 30 SHAL W MJ8033 821220 1100 0.31 21 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | TATION DESCRIPTION | | WELL OTR
DEPTH M NUM | DATE | TIME | 2,4,6
TRI
CHLORO
PHENOL | P-
CHLORO
-M-
CRESOL | 2-
CHLORO
PHENOL | 2,4,DI
CHLORO
PHENOL | 2,4,D
METHYL
PHENOL | NITRO | 4-
NITRO
PHENOL | 2,4,D
NITRO
PHENOL | |--------------------|----------|--------------------------|------------------|------|----------------------------------|-------------------------------|------------------------|----------------------------|---------------------------|----------|-----------------------|--------------------------| | | 03 | 9 S J1621 | 821014 | | | | 1 | | 1 760 | MI | | | | | 04 | SHAL W J1630 | | | | 1 | 1 | 1 | 1 10 | KMI | 1 | i | | | 05 | SHAL W J1636 | | | 8800 | 1 | 1 | 1 | 1 520 | 1 | 1 | i | | | 06 | SHAL W J1642 | | | | 1 | 1 | 1 20 M | 1 20 | MI 150 M | ıi - | 1 | | | 07 | SHAL W J1648 | | | | 1 | 1 18 9 | 1 | 14600 | 1 | 1 | i | | | 08
10 | SHAL W J1654 | | | | ! | 1 | 1 | 1 98 | 1 | 1 | 1 | | | 10 | 3 S J1661
6 S J1662 | 821019 | | | ! | 1 | 13700 | 1 440 | MI | 1 | - 1 | | | 10 | 9 S J1663 | | | | 1 | 1 | 7900 | 1 | 1 | 1 | | | | 10 | 12 S J1664 | | | | 1 | 1 | 15200 | | 1 | 1 | 1 | | | 10 | 15 S J1665 | | | | 1 | | | 4500 | | 1 | 1 | | | 10 | SHAL W J1666 | 821104 | | | 1 | | 1 10 KM | 7900 | | ! | 1 | | | 1.1 | 12 S J1671 | 821008 | | | i | 1 | 1 10 KM | 600 | MI | ! | 1 | | | 11 | SHAL W J1672 | 821109 | | | i | i | 1 | 200 | MI | 1 | | | | 1.1 | DEEP W J1678 | 821109 | 1100 | | i | i | i | 45 | М | 1 | 1 | | | 12 | 12 S J1682 | 821025 | 1230 | | 1 | i | i | 1 400 | MI | | | | | 12 | SHAL W J1684 | 821103 | 1200 | 20 M | 1 | i | i 38 M | 11100 | 1 | 1 | 1 | | | 14 | 3 S J1691 | 821020 | | | 1 | 1 | i | 1 400 | MI | 1 | | | | 14 | 15 S J1695 | 821020 | | | 1 | 1 | 1 | 1 400 | MI | i | i | | | 15 | SHAL W J1702 | 821112 | | 52 M | 1 | 1 | 1 | 1 | 1 | 13200 | i | | | 17 | 9 S J1711 | 821011 | | | 1 | 1 | 1 | 1 440 | MI | 1 | i | | | 17 | SHAL W J0427 | 821110 | | | 1 | 1 | 1 | 1 10 | KMI | i | i | | | 17 | DEEP W JI720 | 821110 | | | | 1 | 1 | 54 | MI 300 | i | i | | | 21 | 3 S J1739 | 821021 | | | | | 11900 | | 1 | 1 | i | | | 21 | 6 S J1740 | 821021 | | | 1 | | 4900 | | 1 | 1 | i | | | 21 | 9 S J1741 | 821021 | | | ! | 1 400 M | 3000 | 400 | MI | 1 | i | | | 21 | 12 S J1742
15 S J1743 | 821021 | | | | ! | | | < 1 | 1 | 1 | | | 21 | SHAL W J1744 | 821021 | | 20 14 | l | | | 2600 | 1 | 1 | 1 | | | 22 | 12 S J1748 | 821105
821012 | | 20 M | | 1 36 M | 34 M | 1000 | 1 190 | 200 M | 11 | | | 22 | 15 S J1749 | 821012 | | | | | | | KM I | | 1 | | | 23 | 3 S J1757 | 821026 | | | | 1 | | 1000 | MI | | 1 | | | | SHAL W JI762 | 821026 | | | | | | 400 | Mil | | 1 | | | | SHAL W J0462 | 821116 | | | | | | 280 | | -3- | | | | | SHAL W J0463 | 821116 | | | | I 200 M | 220 | | 1.3KK | | 1 | | | | SHAL W JO461 | 821115 | | | | 1 200 M | 220 | 20 | | | | | #7 | | 0 S J1647 | 821118 | | | | | | 20 | MI | | 1 | | #8 | | 0 S J1659 | 821118 | | 5.2 | | | | 510 | MI | | ! | | #11 | | 0 S J1675 | 821118 | | | | | | 11 1 | | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ----- ACID COMPOUNDS ----- | STATION DESCRIPTION | | WELL
DEPTH M | OTR
NUM | DATE | TIME | 2,6,DI
NITRO
PHENOL | | PENTA
CHLORO
PHENOL | | PHEN | DL DL | | 001 | , , | | |---------------------|----|-----------------|----------------|------------------|------|---------------------------|-----|---------------------------|-----|-----------|-------|--|-----|-----|--| | | 02 | | J1616 | 821014 | 1040 | | - | 800 | M | | 1 | | | | | | | 03 | | J1620 | 821014 | | | 1 | | 1 | 400 | MI | | | | | | | 03 | | J1621 | 821014 | | | - 1 | | | 400 | MI | | | | | | | 03 | SHAL W | | 821115 | | | ! | | 1 | 10 | KMI | | | | | | | 04 | | J1630 | 821102 | | | | | | 19 | KMI | | | | | | | 05 | | J1634
J1636 | 821018
821103 | | | - ! | 1400 | | 16 | KMI | | | | | | | 06 | | J1642 | 821103 | | | 1 | 1400 | - 1 | 270 | K I | | | | | | | 07 | | J1648 | 821103 | | | i | | i | 500 | MI | | | | | | | 09 | | J1660 | 821103 | | | i | | i | 100 | κi | | | | | | | 10 | | J1662 | 821019 | | | i | | i | 19 | κi | | | | | | | 10 | 9 S | J1663 | 821019 | | | 1 | | i | 27 | KI | | | | | | | 10 | | J1664 | 821019 | 1340 | | 1 | | 1 | 11 | KI | | | | | | | 10 | | J1665 | 821019 | | | 1 | | 1 | 20 | KI | | | | | | | 10 | | J1666 | 821104 | | | - 1 | | 1 | 180 | K | | | | | | | 11 | | J1672 | 821109 | | | 1 | | | 3000 | I | | | | | | | 11 | | J1678 | 821109 | | | - 1 | | | 7200 | - 1 | | | | | | | 12 | | J1684 | 821103 | | 40 | Μļ | 40 | | 120 | 1 | | | | | | | 14 | | J1691 | 821020 | | | ! | 800 | | 1100 | | | | | | | | 14 | | J1692 | 821020 | | | ! | | - ! | 640 | M | | | | | | | 14 | | J1693 | 821020 | | | - ! | | - ! | 14 | K | | | | | | | 14 | | J1694
J1695 | 821020
821020 | | | - 1 | | - ! | 10 | ΚĮ | | | | | | | 14 | | J1696 | 821104 | | | 1 | | - 1 | 2900 | KMI | | | | | | | 15 | | J1702 | 821112 | | | - 1 | 80 | MI | 42 | KMI | | | | | | | 16 | | J1707 | 821020 | | | i | 00 | 1 | 400 | мі | | | | | | | 17 | | J1709 | 821011 | | | i | | i | 15 | KMI | | | | | | | 17 | | J1710 | 821011 | | | i | | i | 15 | KMI | | | | | | | 17 | 9 S | J1711 | 821011 | 1150 | | 1 | | 1 | 12 | KI | | | | | | | 17 | | J1712 | 821011 | | | 1 | | - 1 | 14 | KMI | | | | | | | 17 | | J1713 | 821011 | | | 1 | | 1 | 12 | KMI | | | | | | | 17 | | J1714 | 821013 | | | - 1 | | | 16 | KMI | | | | | | | 17 | | J1717 | 821013 | | | 1 | 1700 | MI | | MI | | | | | | | 17 | | J1718 | 821013 | | | 1 | | - ! | 400 | MI | | | | | | | 17 | | J1719
J0427 | 821013 | | | - ! | | 1 | 400 | MI | | | | | | | 17 | | J1720 | 821110 | | | 1 | | - ! | 91
380 | K | | | | | | | 18 | | J1721 | 821026 | | | 1 | | - 1 | | 5KM | | | | | | | 20 | | J1736 | 821021 | | | i | | i | 680 | MI | | | | | | | 21 | | J1742 | 821021 | | | i | | i | | 5K | | | | | | | 21 | | J1743 | 821021 | | | i | | i | 65 | | | | | | | | 21 | | J1744 | 821105 | | 40 | MI | | i | 10 | KI | | | | | | | 22 | | J1745 | 821012 | | | 1 | | i | 10 | KMI | | | | | | | 22 | | J1746 | 821012 | | | - | | - | 10 | KMI | | | | | | | 22 | | J1747 | 821012 | | | 1 | | 1 | 10 | KMI | | | | | | | 22 | 12 S | J1748 | 821012 | 1030 | | 1 | | - 1 | 10 | KMI | | | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ### WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON ----- A C I D C O M P O U N D S -----2.6.DI PENTA STA WELL OTR NITRO CHLORO STATION DESCRIPTION NUM DEPTH M NUM DATE TIME PHENOL PHENOL PHENOL 1 460 MI 15 S J1749 821012 1100 23 SHAL W J1762 821026 1430 15200 27 SHAL W J0462 821116 1100 4.1KK 28 SHAL W J0463 821116 1230 1 4 K I BERM #7 1 10 KMI I S J1793 821025 1130 1 400 MI SS#6 0 S J1646 821118 1027 SS#7 0 S J1647 821118 1036 1 760 MI 1 17 K | 19 K | SS#8 0 S J1659 821118 1041 0 S J1675 821118
1050 11170 SS#11 0 S J1676 821118 1053 17700 12600 SS#12 UNITS: LIQUID - UG/L (PPB) DISSOLVED $\mbox{M} = \mbox{COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT } K = \mbox{MULTIPLY THE VALUE BY 1,000}$ KK = MULTIPLY THE VALUE BY 1,000,000 ## WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON | | | | | | | | | | PESTI | CIDE | S | | | |---------------------|----|-----------------|------------|--------|------|--------|----------|---|-------|--------------|--------------|------------------|------------------| | STATION DESCRIPTION | | WELL
DEPTH M | OTR
NUM | DATE | TIME | ALDRIN | DIELDRIN | | , | 4,4'-
DDE | 4,4'-
DDD | A-ENDO
SULFAN | B-ENDO
SULFAN | | | | | | | | | | | | | | | | | | 06 | 3 S | J1637 | 821018 | 1035 | 2.86K | 1 3.34K | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 17 | 3 S | J1709 | 821011 | 1100 | | 1 | 1 | 1 38 | 1 | 1 100 | - 1 | 1 1 | | | 25 | 9 S | J1771 | 821026 | 1440 | | 1 | 1 | 1 129 | 1 | 1 | 1 | 1 1 | | | 28 | SHAL W | J0463 | 821116 | 1230 | 3.30 | 3.60 | 1 | 1 | 1 | 1 | 1 | 1 | | SS#5 | | 0 S | J1641 | 821118 | 1008 | | 1145 | 1 | 1 | 1 | 1 | | 1 1 | | STATION DESCRIPTION | NUN | RIVER | M NUM | DATE | TIME | ENDO
SULFAN
SULFATE | ENDR IN | ENDR IN
ALDEHYDE | HEPTA
CHLOR | S T I C I
HEPTA
CHLOR
EPOXIDE | D E S | B-BHC | D-BHC | G-BHC
L INDANE | |---------------------|-----|-------|---------|--|------|---------------------------|---------|---------------------|----------------|--|-------|-------|-------|-------------------| | | | | | | | | | | | | | | | | | | 06 | 3 | S J1637 | 821018 | 1035 | | 1 | 1 | 1 2.93K | 1 | 1 | | 1 | | | | 17 | 3 | S J1709 | 821011 | 1100 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 11.8 | | | 28 | SHAL | W J0463 | 821116 | 1230 | | 1 | 1 | 1 3.29 | 1 | 1 | 1 | 1 | 1 | | SS#5 | | | S J1641 | 821118 | | | 1 | Ì | 1 | 1 | | 1. | 1 | 1 34 . | | SS#6 | | | S J1646 | The state of s | | | İ | İ | 1 | İ . | 1 | 1 | | 0.03K | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT @ = ALL PCBS ARE SUMED INTO PCB-1242 K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | STA WELL
NUM DEPTH M | OTR
NUM DATE | TIME | PCB-1242 | PCB-125 | 64 PCB-1221 | - PCB -
PCB-123 | 52 PCB-1248 | 3 PCB-1260 | PCB-1016 PHENE | TCDD
DIOXIN | |---------------------------------------|---|--|--|----------|---------|---------------------|--------------------|---|-------------|-----------------|----------------| | | 05 3 S
05 12 S
06 6 S
06 9 S
07 6 S | J1620 821014
J1631 821018
J1634 821018
J1638 821018
J1639 821018
J1644 821014 | 1330
1330
1045
1050
1425 | 939 @ | | @ @

 | | @ @

 658
 2930
 586 | @
 108 | @
 304 | ? | | | 10 3 S
14 3 S
15 3 S
15 6 S
15 9 S
17 3 S | J1655 821019
J1661 821019
J1691 821020
J1697 821025
J1698 821025
J1699 821025
J1709 821011
J1736 821021 | 1235
0945
1500
1510
1520
1100 | | 407 | | | 1510
 1142

 19.6K | | 3.16K | ? | | RM #6
RM #8
RM #9
#11
#12 | 21 6 S
23 3 S
23 6 S
23 9 S
25 9 S
1 S
1 S
0 S | J1740 821021
J1757 821026
J1758 821026
J1759 821026
J1771 821026
J1771 821025
J1794 821025
J1794 821025
J1795 821025
J1675 821118 J | 1445
1130
1150
1200
1440
1115
1145
1200
1050 | | | | | 935 | @
 | @
@
@ | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | | | | | | | | | | | BASE | / NEU | JT | RAL | . S | | | | | |--------------------------------|--|--|--|--|--|---------------------------------------|-------------------------|---------------|---|---------------------------|--------------------------|----|----------------------------------|---------------------------------------|-----------------------------|---|--------------|---| | STATION DESCRIPTION | | WELL
DEPTH M | OTR
1 NUM | DATE | TIME | ACENA
THENE | | BEN
ZIDINE | | HEXA
CHLORO
BENZENE | HEXA
CHLORO
ETHANE | | BIS
2-CHLC
EHTYL)
ETHER | | 2-CHLORO
NAPH
THALENE | 1,2-D1
CHLORO
BENZENE | CHLC
BENZ | | | SS#7
SS#8
SS#11
SS#12 | 02
03
11
12
14
14
15
15
15
22
22
22 | 12 SHAL W 3 S 6 S 9 S 6 S SHAL W 3 S 6 S 0 S 0 S | J1621
J1671
J1684
J1691
J1692
J1693
J1698
J1699 | 821102
821014
821008
821020
821020
821020
821025
821025
821012
821012
821012
821012
821012
821118
821118 | 1210
1200
1200
0945
1020
1040
1510
1520
1230
0900
0930
1100
1036
1041
1050 | 10
10
430
800
5090
400 | KMI
KMI
MI
K I | | | | 11800 | M | 20 | M M M M M M M M M M | |

 | | | | 001112 | | 0 3 | 31070 | 821118 | 1000 | 4700 | - 1 | | 1 | | 1 | 1 | | - 1 | | | 1 | 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - UG/KG (PPB) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | STA WELL OTR
NUM DEPTH M NUM | I,4-L
CHLOI
DATE TIME BENZE | 3,3'-
DI DICHLORO 2,4-
RO BENZI DINITRO | 2,6- I,2-DI DINITRO PHENYLHY FLUOR TOLUENE DRAZAINE ANTHENE | S 4-CHLORO 4-BROMO BIS(2- PHENYL PHENYL CHLOROISO PHENLY PHENLY PROPYL) ETHER ETHER ETHER | |--|--|--|---|---
--| | BERM #3 SS#2 SS#4 SS#5 SS#6 SS#7 SS#8 SS#9 SS#10 SS#11 SS#12 | 03 6 S J1620 03 9 S J1621 11 12 S J1671 14 3 S J1691 20 3 S J1733 21 3 S J1739 21 6 S J1740 22 3 S J1745 22 6 S J1746 22 12 S J1748 22 15 S J1749 23 3 S J1757 1 S J1789 0 S J1628 0 S J1636 0 S J1641 0 S J1646 0 S J1659 0 S J1675 0 S J1675 | 821014 1205
821014 1210
821008 1200
821020 0945
821021 0940
821021 1400
821021 1445
821021 1510
821012 0930
821012 0930
821012 1130
821012 1100
821012 1100
821026 1130
821018 10952
821118 1002
821118 1002
821118 1008
821118 1044
821118 1044
821118 1044
821118 1048
821118 1048
821118 1050
821118 1050 | | | MI | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ## WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON | STATION DESCRIPTION | | WELL
DEPTH | н м | OTR
NUM | DATE | TIME | BIS
2-CHLORO
ETHOXY
METHANE | HEXA
CHLORO
BUTA | HEXA
CHLOROCY
CLOPENT
AD IENE | ISO | NAPH | T R A L S | N-
NITROSO
DIMETHYL | N-
NITROSO
DIPHENYL
AMINE | N-
NITROSO
DIPROPYL
AMINE | |---------------------|----------|---------------|-----|----------------|------------------|------|--------------------------------------|------------------------|--|----------|--------------------|-----------|---------------------------|------------------------------------|------------------------------------| | | | | | J1618 | 821102 | | | l | ! | l | | ! | | 1 20 M | ! | | | 03 | | | J1621 | 821014 | | | ! | ! | | 1 13 K | | 1 | 1 | | | | 05
05 | | | J1632
J1633 | 821018
821018 | | | | 1 | | 400 M | | | 1 | 1 | | | 10 | | | J1663 | 821019 | | | | 1 | I 400 M | | 1 | | 1 | i | | | 10 | | | J1665 | 821019 | | | | 1 | 1 400 M | | i | | i | i | | | II | | | J1669 | 821008 | | | i | 1 | 1 | 500 N | i i | i | i | i | | | 11 | | | J1670 | 821008 | | | i | i | i | 1 17 KM | | i | i | i | | | - 11 | | | J1671 | 821008 | 1200 | | 1 | i | 1 400 M | 5200 | 1 | İ | Ì | 1 | | | - 11 | SHAL | W | J1672 | 821109 | 1030 | | I | 1 | 1 20 M | | 11 | 1 | 1 | 1 | | | 11 | DEEP | | J1678 | 821109 | 1100 | | l | 1 | | 23 M | 11 | 1 | 1 | 1 | | | 12 | | | 11680 | 821025 | | | | 1 | 1 | l | 1 10 100 | 1 | 1 480 M | 1 | | | 12 | | | J1684 | 821103 | | | | 1 | 1 | 20 M | | | | 1 | | | 14 | | | J1691 | 821020 | | | | ! | | 11800 N | | | ! | ! | | | 14 | | | J1692 | 821020 | | | 1 400 M | | 1 400 14 | 400 M | | | 1 | ! | | | 14 | | | J1693 | 821020 | | | | | 1 400 M | | | 1 | | 1 | | | 15 | SHAL | | J1702 | 821112 | | | 1 | 1 | 1 | 20 N | | ! | 1 | 1 | | | 17 | | | J1711
J1716 | 821011
821013 | | | | | | 11700 M
1 400 M | | 1 | 1 | 1 | | | 17 | DEEP | | J1710 | 821110 | | | | | I 44 M | | | 1 | 1 | 1 | | | 20 | | | J1734 | 821021 | | | | 1 | 1 44 1 | 4300 | 1 | | 1 | i | | | 20 | | | J1736 | 821021 | | | i | | i | 1 400 N | i | i | i | i | | | 21 | | | J1740 | 821021 | | | | | i | 400 N | | i | i | i | | | 21 | | | J1741 | 821021 | | | i | i | i a | 1 400 M | | İ | i | i | | | 22 | 3 | S | J1745 | 821012 | 0900 | | 1 | 1 | 1 | 1 34 KM | 1 | 1 | 1 | 1 | | | 22 | 6 | 5 | J1746 | 821012 | 0930 | | 1 | 1 | | 1 30 KM | il | 1 | 1 | 1 | | | 22 | | | J1747 | 821012 | | | | l | 1 | 1 13 KM | | 1 | 1 | 1 | | | 22 | | | J1748 | 821012 | | | | 1 | 1 | 1 12 KM | H | 1 | | 1 | | | 22 | | - | J1749 | 821012 | | | | ! | 1 | 2961 | | 1 | 1 | 1 | | | 22 | DEEP | | J1756 | 821110 | | | | 1 | 1 540 | 40 M | | 1 | 1 | 1 | | BERM #1 | 28 | SHAL | W | | 821116 | | | l
I | | 540 | 1 400 1 | | 1 | 1 | 1 | | SS#4 | | | | J1787
J1635 | 821025
821118 | | | | | | 400 M
 7400 | | | 1 | 1 | | SS#6 | | | | J1646 | 821118 | | | 2/50/15 | | | 400 M | i | i | 1 | i | | SS#7 | | | | J1647 | 821118 | | | 1100 | 10.00 | i | 4000 | i | i | i | i | | SS#8 | | | | J1659 | 821118 | | | | i | | 6200 K | i | i | i | i | | SS#9 | | | | J1673 | 821118 | | | | 1 | | 13 KM | | 1 | i | 1 | | SS#10 | | | | J1674 | 821118 | | | 1 | 1 | | 1 120 K | 1 | 1 | 1 | 1 | | SS#11 | | C | S | J1675 | 821118 | 1050 | | 1 | 1 | | 627 K | 1 | 1 | 1 | 1 | | SS#12 | | C |) S | J1676 | 821118 | 1053 | | I | 1 | 1 | 18 K | 1 | 1 | 1 | 1 | | TRANSPORT BLANK | | | W | J0429 | 821101 | 1100 | | | 1 | | 20 M | 1 | 1 | 1 | 1 | M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH M | OTR
NUM | DATE | TIME | BIS
2-ETHYL
HEXYL
PHTHALAT | BENZYL
BUTYL
PHTHALAT | DI-N-
BUTYL
PHTHALAT | B A S E DI-N- OCTYL PHTHALAT | / NEU DIETHYL PHTHALAT | DIMETHYL | BENZO
ANTHR
CENE | | BENZO A | BENZO B
FLUORAN
THENE | |---------------------|----|-----------------|----------------|------------------|------|-------------------------------------|-----------------------------|----------------------------|-------------------------------|------------------------|----------|------------------------|---|---------|-----------------------------| | | 03 | | J1621 | 821014 | | | ! | | ! | ! | | | | | 1 | | | 11 | | J1669
J1671 | 821008
821008 | | 29.9K | 10100 | | ! | 1 | | 1 040 | | | | | | 12 | | J1684 | 821103 | | 29.91 | 19100 | 1 | 1 | 1 | 1 | 840 | M | | 11 40 14 | | | 16 | | J1704 | 821020 | | 29 K | | 1 | 1 | | 1 | 60 | M | I 40 N | 40 M | | | 16 | 9 S | J1705 | 821020 | | 29.6K | | i | i | i | i | | | i | 1 | | | 21 | | J1739 | | 1400 | | 1 | 1 | ĺ | İ | i | 14000 | | i | i | | | 21 | | J1740 | | 1445 | | 1 | 1 | 1 | 1 | 1 | 1 400 | M | İ | i | | | 21 | | J1741 | | 1510 | 600 M | | 1 | 1 | 1 | ! | 1 | | l | 1. | | | 22 | | J1746
J1747 | 821012
821012 | | 29 KM
410 K | 1 | 1 | 1 | | ļ. | 1883 | | | ! | | | 22 | | J1749 | 821012 | | 31 K | | 1 | 1 | 1 | 1 | 1 | | | 1 | | | 23 | | J1757 | 821026 | | 31 K | | i | 1 | i | 1 | 400 | М | | | | | 30 | SHAL W | J0465 | 821220 | 1100 | 544K | 1 | i | i | i | i | 1 | | | i | | SS#2 | | | J1628 | 821118 | | 74 K | 1 | 1 | 1 | 1 | 1 | 1 | | | i | | SS#4 | | | J1635 | 821118 | | 410 K | 1 | 1 | 29 K | 1 | 1 | 1 400 | M | | 1 | | SS#6
SS#7 | | | J1646 | 821118 | | 1000 M | | 1 | | ! | 1 | 1.12 | | | 1 | | SS#8 | | | J1647
J1659 | 821118
821118 | | 4600 | | 1 | 1 | | 1 | 720 | M | - | | | SS#10 | | | J1674 | 821118 | | 500 K | | 1 | | | 1 | 884 | K | | 200 K | | SS#11 | | | J1675 | 821118 | | 860 K | | i | | | 1 | 76 | K | 4,50 | | | SS#12 | | | J1676 | 821118 | | 12 K | i | 2600 | i | | i | 14400 | N | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED $\mbox{M} = \mbox{COMPOUND}$ PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT $\mbox{K} = \mbox{MULTIPLY}$ THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH M | OTR
NUM | DATE | TIME | BENZO K
FLUORAN
THENE | | | ACENAPH
THYLENE | | | / N E U
BENZO
GHI
PERYLENE | | PHENAN | DIBENZO
A,H ANTH
RACENE | INDENO
I,2,3-CI
PYRENE | |---------------------|----------|-----------------|----------------|------------------|------|-----------------------------|----------------|------|--------------------|-------|-----|-------------------------------------|---------|---------|-------------------------------|------------------------------| | | 03 | | J1620 | 821014 | | | 1 | - 4 | | | | 1 | | 1 400 | MI | | | | 03 | | J1621 | 821014 | | | I | - 1 | | 1 | | I | 1 400 | M16500 | i | i | | | 05 | | J1631 | 821018 | | | 1 | | | 1 | | 1 | 1 | 1 400 | MI | İ . | | | 05
05 | | J1632 | 821018 | | | 1 400 | M | | 1 | | 1 | 1 | | MI | 1 | | | 11 | | J1633
J1669 | 821018 | | | ! | | | į. | | 1 | 1 | | MI | 1 | | | - 11 | | J1670 | 821008
821008 | | | 1 | | | 1 | | 1 | I | | MI | 1 | | | - ii | | J1671 | 821008 | | | 1 520 | | | 11000 | | ! | | | MI | 1 | | | 12 | | J1684 | 821103 | | 40 | 520
 M 20 | MI | | 11200 | Μ | | 1 16.9K | 62.4K | | ! | | | 14 | | J1691 | 821020 | | 40 | MI 20 | M | | 1 | | 64 M | 1 | 1.700 | 1 44 M | 1 42 N | | | 14 | | J1692 | 821020 | | | | - 1 | | 1 | | 1 | 1 | | MI | 1 | | | 14 | | J1693 | 821020 | | | | - 1 | | 1 | | | 1 | | MI | ! | | | 17 | | J1711 | 821011 | | | 1 | 1 | | 1 | | | 1 400 | | MI | ! | | | 21 | | J1739 | 821021 | | | 2500 | i | | 11600 | | | 400 | | MI | 1 | | | 21 | | J1740 | 821021 | | | 1 400 | MI | | 1 | | | I
I | 17000 | 1 | 1 | | | 21 | | J1741 | 821021 | | | 1 | - 11 | | i | | | | | MI | 1 | | | 22 | | J1745 | 821012 | | | 1 | i | | 1 | | | 1 10 KI | | M I
M I | ! | | | 22 | | J1746 | 821012 | | | i | i | | 1 10 | KM | | 1 10 K | | M [| 1 | | | 22 | | J1747 | 821012 | | | i | i | | 1 10 | Mil | | ION | | 7 | Į. | | | 22 | | J1748 | 821012
 | | i | i | | i | | | | 12 K | MI | 1 | | | 22 | 15 S | J1749 | 821012 | | | i | i | | 1 400 | М | | 550 | 1 2961 | 1 | 1 | | | 23 | 3 S | J1757 | 821026 | 1130 | | 1 400 | MI | | 1 | | | 1 | | мі | 1 | | BERM #1 | | 1 5 | J1787 | 821025 | 1000 | | i | i | | i | | | | | MI | 1 | | BERM #3 | | 1 S | J1789 | 821025 | 1030 | | 1 | i | | i | | | | | MI | 1 | | SS#2 | | 0 S | J1628 | 821118 | 0952 | | 1 | i | | i | | | | 1 11 K | | i | | SS#4 | | | J1635 | 821118 | 1002 | | 1 400 | MI | | i | | | | i ii K | | i | | SS#5 | | | J1641 | 821118 | | | 1 | 1 | | İ | | | | | мi | i | | SS#6 | | | J1646 | 821118 | 1027 | | 1 | - 1 | | 1 | | | | | 41 | i | | SS#7 | | | J1647 | 821118 | | | 1 880 | MI | | 1 400 | MI | | 800 M | 116500 | i | i | | SS#8 | | | J1659 | 821118 | | 130 K | | KI | 400 M | 1 | . 1 | i | 8600 K | 1 20 KK | 1 | i | | SS#9 | | | J1673 | 821118 | | | 1 11 | KMI | | 1 | 1 | 1 | | 1 18 K | | 1 | | SS#10 | | | J1674 | 821118 | | | 1 | 1 | | 1 | 1 | - 1 | | 1 190 K | | 1 | | SS#11 | | | J1675 | 821118 | | | 85 | KI | | 1 | 1 | 1 | 62 K | 1 763 K | 1 | 1 | | SS#12 | | 0 5 | J1676 | 821118 | 1053 | | 15100 | 1 | | | - 1 | 1 | 5100 | 11800 1 | 41 | İ | M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ## WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON | STATION DESCRIPTION | | WELL | OTR
M NUM | DATE | TIME | PYREN | | BENZO(A)ANTHRACENE/
CHRYSENE | A S E / N E U T R A
BENZO(B)FLUORANTHENE/
BENZO(K)FLUORANTHENE | ANTHRACENE/
PHENANTHRENE | |---------------------|----|------|--------------|---------------------------|------|-------|------|---------------------------------|--|-----------------------------| | | 03 | 6 | S J1620 | 821014 | 1205 | 440 | MI | | | | | | 03 | 9 | S J162 | 821014 | 1210 | 400 | MI | | 1 | 1 | | | 11 | 12 | S J167 | 821008 | 1200 | 11. | OK I | | 1 | 1 | | | 14 | 3 | S J169 | 821020 | 0945 | 640 | MI | | 1 | 1 | | | 20 | 3 | S J173 | 821021 | 0940 | 520 | MI | | 1 | 1 | | | 21 | | S J1739 | | | 7400 | - 1 | | 1 | 1 | | | 21 | | S J1740 | | | | MI | | | | | | 21 | | S J174 | | | | M | | Į. | | | | 22 | | S J1745 | Company of the last terms | | | KMI | | | | | | 22 | | S J1746 | | | | KMI | | ! | | | | 22 | | S J1749 | | | | M | | | | | 5551. ". | 23 | 3 | S J175 | | | | MI | | ! | | | BERM #1 | | | S J178 | | | | MI | | | | | BERM #3 | | ı | S J1789 | | | 0.7.5 | MI | | | | | SS#2 | | - | S J1628 | | | | KMI | | | | | SS#3 | | | S J1629 | | | | M | | | | | SS#4 | | | S J163 | | | | М | | | | | SS#5 | | | S J164 | | | | MI | | | | | SS#6
SS#7 | | | S J164 | | | | 1411 | | | | | SS#8 | | | S J1659 | | | | KK I | | i | | | SS#9 | | | S J167 | | | | | | i | i | | SS#10 | | | S J167 | | | | KI | | i . | i | | SS#11 | | | S J167 | | | | | | | | | SS#12 | | | S J1670 | | | | 2000 | | i | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON | STATION DESCRIPTION | | WELL
DEPTH | | OTR
NUM | DATE | TIME | I,I,2,2-
TETRA
CHLORO
ETHANE | CHLORO
ETHANE | | 2-CHLORO
ETHYL
VINLY
ETHER | CHLORO | 1,1- | TRANS-
1,2-
DICHLORO
ETHENE | 1,2-
DICHLORO
PROPANE | TRANS-
1,3-
DICHLORO
PROPENE | CIS-1,3-
DICHLORO
PROPENE | |---------------------|----|---------------|---|--|------------------|------|---------------------------------------|------------------|------|-------------------------------------|--------------|---------|--------------------------------------|-----------------------------|---------------------------------------|---------------------------------| | | 01 | | | J1601 | 821007 | | | | ļ | | ! | ! | 2.5 M | ! | ! | ! | | | 01 | | | 11606 | 821108 | | | | - ! | | ! | ! | 14400 | l | 1 | | | | 02 | | | J1612
J1616 | 821108
821014 | | | | - 1 | | I | 1 | 1 18 M | | 1 | ! | | | 02 | | | J1617 | 821014 | | | | 1 | | 1 | 1 | 9.2 M
2.7 M | | 1 | 1 | | | 02 | | | J1618 | 821102 | | | | i | | 32 | I II M | 11200 | | 1 | | | | 03 | | | J1621 | 821014 | | | | i | | 1 | i '' | 2.5 M | i | i | i | | | 04 | SHAL | W | J1630 | 821102 | | | 11 | MI | | I 17 M | 1 38 | 15800 | i | i | i | | | 05 | SHAL | W | J1636 | 821103 | 1500 | | | - | | 1 130 | 1 87 | 1 15 M | ĺ | ĺ | İ | | | 06 | | | J1642 | 821103 | | 4 | | 1 | 1 | 52 | 1 29 | 1 21 M | 1 | I | 1 | | | 07 | | | J1648 | 821103 | | | | -! | | l 15 M | 9.2 M | | | ļ. | 1 | | | 08 | SHAL | | J1649 | 821025 | | | - | NA I | | 56 | 1 00 | 2.5 M | | | 1 | | | 08 | SHAL | | | 821108
821103 | | | 5 | MI | | 56 | 88 | 920 | | | | | | 10 | | | J1665 | 821019 | | 2.5 M | | i | | | 1 | 4600 | | | | | | 11 | | | J1678 | 821109 | | 2.0 | | i | | | i | 780 | | i | 1 | | | 12 | SHAL | | | 821103 | | i | | i | i | 13 M | 1 8.5 M | | | | i | | | 13 | 6 | S | J1686 | 821027 | 1325 | 2.5 MI | | 1 | | | i | | | İ | i | | | 14 | | | J1693 | 821020 | 1040 | | | 1 | 1 | 3.8 M | 1 | | | l | | | | 14 | | | J1694 | 821020 | | | | 1 | | 42 | 1 | | | l | 1 | | | 14 | | | J1695 | 821020 | | 2.5 MI | | 1 | 1 | | 1 | | | l | | | | 14 | SHAL | | | 821104 | | | | 1 | ! | 1700 | | | 10 Y | | 1 | | | 15 | SHAL | | J1698 | 821025
821112 | | | | 1 | | 5 KM | | | | | | | | 16 | SHAL | | | 821104 | | | | 1 | - 1 | 27 K
20 M | | 12 M | | | | | | 17 | | | J1710 | 821011 | | | | i | i | 8.9KM | | 1 12 111 | | | | | | 17 | | | J1711 | 821011 | | i | | i | i | 18 K | | | | | i | | | 17 | | | J1712 | 821011 | | i | | i | i | 505 | 1 2.5 M | 2.5 MI | 100 | i | İ | | | 17 | | | J1716 | 821013 | 1350 | - 1 | | - | 1 | 65 | 1 | | | İ | İ | | | 17 | | | J1717 | 821013 | | | | ļ | | 2.5 M | | | | | | | | 17 | SHAL | | | 821110 | | | | 1 | | 12 K | | | | | l | | | 17 | | | J1720
J1726 | 821110 | | 1 | | - 1 | - ! | 130 | E M | 70 | | | l | | | 19 | | | J1728 | 821112
821027 | | 2.5 MI | | - 1 | - 1 | 5 M | 1 5 M | 38 | | | 1 | | | 21 | | | J1741 | 821021 | | 2.0 | | i | i | | | 24 | | | l
I | | | 21 | SHAL | | | 821105 | | i | | i | i | | i | 390 K I | | | i | | | 22 | 9 | S | J1747 | 821012 | 1000 | i | | İ | i | | į i | 2.5 MI | i | | | | | 22 | | | J1750 | 821110 | | 1 | | - 1 | 1 | | 1 | 130 | | | | | | | DEEP | | | 821110 | | | | ļ | 1 | 7800 | | | | | | | | 23 | SHAL | | | 821026 | | 10 11 12 1 | | I | | | | 85 | | | | | | 24 | | | J1765
J1766 | 821022 | | | | 1 | - 1 | 2 5 14 | | 28 | | | | | | 24 | | | J1767 | 821022
821022 | | | | 1 | 1 | 2.5 M | | 34
2.5 M | | | | | | 25 | | | J1771 | 821026 | | i | | i | | | | 8.1 MI | | | | | | 25 | | | J1774 | 821111 | | i | | i | 1 10 - 10 - 1 | | | 72 | 1 | | | | | 27 | | | The same of sa | 821116 | | i | | i | i | 6700 | ĺ | | i | | i | ORGANIC ANALYSES WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | | | | | V O | LATILES | | | |---------------------|-----------------|-------------|------------------|------------------|------------------|----------------|--------------| | | | | | CARBON | 1,2- | 1,1,1- 1,1- | 1,1,2- | | | STA WELL OTR | | ACRYLO | TETRA | CHLORO DICHLORO | TRICHLOR DICHL | ORO TRICHLOR | | STATION DESCRIPTION | NUM DEPTH M NUM | DATE TIME | ACROLEIN NITRILE | BENZENE CHLORIDI | E BENZENE ETHANE | ETHANE ETHAN | E ETHANE | | | | | | | | | | | BLANK | S J1797 | 821008 | 1 | 1 1 | 1 | 1 2.6 MI | 1 1 | | SS#4 | 0 S J1635 | 821118 1002 | 1 | 1 | 1 1 | 1 2.5 MI | | | TRANSPORT BLANK | W J0429 | 821101 1100 | 1 | 1 | 1 1 | 5 M | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | | | | | | | | | | | LATI | | | | | | |---------------------|----------
---------------------|----------------|------------------|---|-----------|------------|----------------------|-----------------------------|--------|-----|--------|------------|------------------------------|------------------------------| | STATION DESCRIPTION | | A WELL
A DEPTH N | OTR
4 NUM | DATE | TIME | ACROLE IN | NITRILE | BENZENE | CARBON
TETRA
CHLORIDE | BENZEN | E | ETHANE | O TRICHLOR | I,I-
R DICHLORO
ETHANE | 1,1,2-
TRICHLOR
ETHANE | | | 01 | 9 9 | J1603 | 821007 | 0930 | | 1 | | 1 | 1 11 | | | | 1 | | | | 01 | SHAL V | V J1606 | 821108 | 1330 | | İ |
 6.0 M
 420 | i | i '' | | | 370 | i | i | | | 01 | | 1 11612 | | | | 1 | 1 | ĺ | İ | | i | 1 6.8 M | i | i | | | 02 | | V J1618 | 821102 | | | I | 1 6.0 M | 1 | 1 | | 5 | MI 120 | 1 30 | 1 9.3 M | | | 04 | SHAL V | | 821102 | | | | 1 420 | 1 | 1 | | 5 | MI 270 | 1 160 | 1 12 M | | | 05 | | J1634 | 821018 | | | 1 | 1 | | 1 | | | 1 34 | 1 | 1 | | | 05 | | 1 11636 | 821103 | | | | 1 77 | | 5 | M | | | 320 | 1 | | | 06
07 | SHAL V | 11642 | 821103
821103 | | | | 1 24 M | | 5 | М | 5 | MI 170 | 49 | 6.9 M | | | 08 | SHAL V | | 821108 | | | I
I | 1 12 M | | 1 | | | 1 80 | 47 | 1 | | | 09 | 9 9 | J1657 | 821019 | | | | 1 14 M | ! | 1 | 1 | 9.7 | | 620 | 45 | | | 09 | 12 9 | J1658 | 821019 | | | | 1 | | 1 | - 1 | | 7.3 M | | ! | | | 09 | SHAL W | | 821103 | | | i | 1 | | 1 | - 1 | | 4.9 M | ! | 1 | | | 10 | SHAL W | | 821104 | | | | 1 | | | 1 | | 15500 | | | | | 11 | | J1667 | 821008 | | | | i | | 1 | | | 1 5 M | | | | | - 11 | 6 5 | | 821008 | | | | i | i | | 1 | | 2.5 M | ā. | | | | 11 | 8 9 | J1669 | 821008 | | | | i | i | 1 | i | | 1 10 M | : | 1 2 E M | | | - 11 | 12 9 | J1671 | 821008 | | | | i | | i | i | | 1 18.2 | | 2.5 M | | | 11 | SHAL W | | 821109 | | | | i | i | | i | | 1 73 K | | 5.9 M | | | 11 | DEEP W | J1678 | 821109 | 100000000000000000000000000000000000000 | | | i | i | i | i | | 15200 | 12100 | 1 | | | 12 | 15 9 | J1683 | 821025 | 1240 | 1 | | i | | i | i | | 1 3.8 M | | | | | 12 | SHAL W | J1684 | 821103 | 1200 | | | 1 9.7 M | | i | i | | 1 120 | 1 21 M | 1 5 M | | | 14 | 9 5 | J1693 | 821020 | 1040 | - 1 | | i i | | i | i | | 1 4.5 M | | , , m | | | 14 | | J1694 | 821020 | | 1 | | 1 5.9 M | | | i | | 1 10 M | | | | | 14 | SHAL W | J1696 | 821104 | | 1 | | 1 5 M | | ĺ | 1 | | 1 750 | 1 | i | | | 15 | 3 9 | J1697 | 821025 | | 1 | | 1 1 | | | 1 | | 1 3.1 M | i | i | | | 15 | | J1698 | 821025 | | | | 1 5 KM | | | 1 | | 1 174 K | ĺ | | | | 15 | | J1699 | 821025 | | | | 1 | | | 1 | | 1 15 KM | | | | | 15 | SHAL W | | 821112 | | | | | | | 1 | 16 K | 1 340 K | 33 K | | | | 16 | | J1703 | 821020 | | Fig 1 | | | | | 1 | | 1 5.4 M | | 1 | | | 17 | SHAL W | J1708
J1710 | 821104 | | | | | | | ļ | | 62 | I II M | | | | 17 | | J1711 | 821011 | | 1 | | 6.5KM | | | ! | | 1 15 KM | | | | | 17 | | J1712 | 821011 | | - : | | 1 100 5 | | | ! | | 1 16 K | | | | | 17 | | J1716 | 821013 | | i | | 199.5
 9.8 M | | | - 1 | | 332.5 | 17.3 | | | | 17 | SHAL W | | 821110 | | 1 | | 12200 | | | - 1 | | 40 | | | | | 20 | | J1736 | 821021 | | i | | 2.5 MI | | | . ! | | 11700 | | | | | 22 | | J1747 | 821012 | | i | | 2.5 MI | | | | | 3.2 M | | | | | 22 | | J1748 | 821012 | | i | | 2.5 MI | i i | | i | | | 3.2 MI
2.5 MI | | | | 26 | 6 S | J1782 | 821026 | | i | | i | i i | | i | | 17 | 2.5 | | | | 26 | | J1783 | 821026 | | i | | i i | i | | i | | 1 7.4 M | i | | | | 27 | SHAL W | J0462 | 821116 | 1100 | 1 | | i i | i | | i | | 1 20 K | i | i | | | 28 | SHAL W | | 821116 | 1230 | 1 | | I IO MI | i | | i | | 1 100 | 12 M | i | | DEDIA #P | 29 | SHAL W | | 821115 | 1300 | 1 | | l i | i | | i | | 1 5 MI | | | | BERM #3 | | | J1789 | 821025 | | - 1 | The second | l i | 1 | | 1 | | 1 2.6 MI | i | i | | BERM #8 | | IS | J1794 | 821025 | 1145 | 1 | | | 1 | 2.5 | MI | | 1 | i | i | ORGANIC ANALYSES WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | | | | | | | | 1,1,2, | 2- | | 2 | -CHLOR | 0 | V | 0 1 | LATIL | E S | | TRANS- | | |---------------------|----|---------------|-----|------------|--------|------|---------------------------|----|------------------|------|----------------------|---|-------|---------|----------------------------|------|--|--------|-------------------------------| | STATION DESCRIPTION | | WELL
DEPTH | н М | OTR
NUM | DATE | TIME | TETRA
CHLORO
ETHANE | | CHLORO
ETHANE | E | THYL
INLY
THER | C | HLORO | | I,I-
DICHLORO
ETHENE | 1,2- | 1,2-
DICHLORO
PROPANE | 1,3- | CIS-1,3
DICHLOR
PROPENE | | | 28 | SHAL | - W | J0463 | 821116 | 1230 | | | 5 | MI | | | 12 | —-
М | 5.4 M | | | | | | | 29 | SHAL | W | J0461 | 821115 | | | i | 3 | 1-11 | | i | 29 | Ial | 1 9.4 1 | | | | | | BERM #6 | | 1 | S | J1792 | 821025 | 1115 | 2.5 | MI | | i | | İ | | | i | | i la | i | i | | BERM #8 | | 1 | S | J1794 | 821025 | 1145 | 2.5 | MI | | 1 | | 1 | | | 1 | | 1 | i | i | | SS#4 | | 0 | S | J1635 | 821118 | 1002 | | 1 | | 1 | | İ | 5.1 | M | İ | | i e | i | i | | TRANSPORT BLANK | | | W | J0429 | 821101 | 1100 | | - | | 1 | | 1 | 5 | M | 1 | | İ | 1 | 1 | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH | | OTR
NUM | DATE | | ETHYL
BENZENE | METHYL
LENE | CHLORO | BROMO
METHANE | BROMO | BROMO
D I CHLORO | | DICHLORO
DIFLUORO | DIBROMO | |---------------------|----------|---------------|-----|----------------|------------------|------|------------------|------------------|--------|------------------|-------|---------------------|--------|----------------------|---------| | | 01 | | | | 821007 | | | 1 16 | ! | ! | ! | | 1 4 M | | | | | 01 | | | J1602
J1603 | 821007
821007 | | | 1 17 | | ! | Į. | ! | 4.3 M | | l | | | 01 | | | J1604 | 821007 | | | 17
 11.7 M | 1 | | 1 | 1 | 2 E M | | 1 | | | 01 | | | J1606 | 821108 | | | 1 190 | i | i | i | i | 2.5 M | | 1 | | | 01 | DEEP | | J1612 | 821108 | | | 1 5 M | İ | i | i | i | | | i | | | 02 | | | 11613 | 821014 | | | 1 12 M | | 1 | 1 | 1 | i i | | i | | | 02 | 12 | 5 | J1616
J1617 | 821014 | | | 1 9 M | | 11 | ! | 1 | | | | | | 02 | SHAL | | | 821014
821102 | | | 9 M
 180 | | 1 | | ! | | | l | | | 03 | | | J1619 | 821014 | | | 7.7 M | i | | 1 | 1 | | | 1 | | | 03 | 6 | S | J1620 | 821014 | | | i 78 | i | i | i | i i | | | | | | 03 | | | J1621 | 821014 | | | 7.5 M | 1 | 1 | İ | i i | i | | | | | 04 | | | J1625 | 821018 | | | 22 | | ! | | 1 1 | | | | | | 04 | | | J1626
J1627 | 821018
821018 | | | I II M | | ! | | 1 | 1 | | | | | 04 | SHAL | | | 821102 | | | 7.6 MI
930 | | | | !!! | | | | | | 05 | | | 11631 | 821018 | | | 1 139 | 200 | i | | 1 1 | | | | | | 05 | | | J1633 | 821018 | | | 7.8 MI | | i | i | 1 1 | | 1 | | | | 05 | | | J1634 | 821018 | 1330 | 16 | 26.03 | | i | İ | i i | | i | | | | 05 | SHAL | | | 821103 | | 32 | 23 K I | | 1 | | i i | 5 MI | i | | | | 06
06 | | | J1637
J1638 | 821018 | | | 3.2 MI | | ! | | ! ! | 1 | 1 | | | | 06 | | | 11639 | 821018
821018 | | | 3.6 MI
5.9 MI | | 1 | | !!! | | | | | | 06 | | | J1640 | 821018 | | | 5.9 MI | | 1 | | 1 1 | | | | | | 06 | SHAL | | | 821103 | | 12 M | | | i | | i i | | | | | | 07 | | | J1643 | 821014 | | | 8.8 MI | | i i | | i i | i | i | | | | 07 | 6 | S | J1644 | 821014 | | | 9.5 MI | | 1 1 | | i i | i | i | | | | 07 | SHAL | S . | 11645 | 821014 | | E M | 8.4 MI | | | | 1 | 1 | 1 | | | | 08 | | | J1649 | 821103
821025 | | 5 M | 760 | | | | !!! | 0.5.11 | | | | | 08 | | | | 821025 | | | II M | | | | | 2.5 MI | | | | | 08 | | | 11651 | 821025 | | | IO MI | | i i | | i i | 2.6 MI | i | | | | | SHAL | | | 821108 | | 5 MI | | | 1 1 | | i i | 9.8 MI | i | | | | 09 | | | 11655 | 821019 | | | 6.5 MI | | | | 1 | - 1 | - 1 | | | | 09 | | | | 821019
821019 | | | 6.9 MI | | !!! | | ! | 1 | - 1 | | | | | SHAL | | | 821103 | | | 11 MI
220 K I | | | | | 150 | ! | | | | 10 | | | | 821019 | | | 32.5K | 4.1 | - | | | | | | | | 10 | 6 | S. | 11662 | 821019 | | i i | 8.9 MI | | i i | | i i | i | i | | | | 10 | | | | 821019 | | 2.5 MI | | 2.5 M | la i | | l i | i | i | | | | 10 | | | | 821019 | | 8.3 MI | | | | | 1 | 2.5 M | i | | | | 10 | SHAL | | | 821019
821104 | | 5.3 MI | | | | | !!! | 1 | 1 | | | | 11 | | | | 821104 | | | 18 K I
4 MI | | | | | | | | | | ii | | | | 821008 | | 2.7 M | | | | | | 1 | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH | | DATE | | ETHYL
BENZENE | METHYL
LENE | CHLORO
METHANE | BROMO | BROMO | BROMO
DICHLORO
METHANE | FLUORO
TRICHLOR | DICHLORO | CHLORO | |---------------------|----------|---------------|--------------------|------------------|------|------------------|----------------|-------------------|-------|----------|------------------------------|--------------------|----------|------------| | | 11 | 8 | S J1669 | 821008 | | 5.6 M | 20 | I | 1 | 1 | | | 1 | 1 | | | 11 | | S J1670 | | | 7 M | | | ! | ! | 1 | 4 | 1 | 1 | | | 11 | | S J1671
W J1672 | 821008
821109 | | 143 | 51 | 1 | 1 | 1 | | | ! | | | | ii | | W J1678 | 821109 | | | 46 K | | 1 | 1 | ! | | ! | | | | 12 | | S J1679 | 821025 | | | 3.4 M | | | 1 | | 7 6 M | 1 | | | | 12 | | S J1680 | 821025 | | | 7.3 M | | | 1 | | 3.6 M
2.5 M | 7 | | | | 12 | | S J1681 | 821025 | | | 17.94 | | 1 | i | | 2.5 M | | 1 | | | 12 | | S J1682 | 821025 | | | 7.4 M | | i | i | | 2.5 M | | | | | 12 | 15 | S J1683 | 821025 | 1240 | | 19 | İ | i | i | i i | 2.9 M | | | | | 12 | | W J1684 | 821103 | 1200 | 5.4 M | 1540 | | i | i | 1 | 9.2 M | | i | | | 13 | | S J1686 | 821027 | | 2.5 M | 9.9 M | 1 | 1 | 1 | 1 | 2.5 M | | i | | | 13 | | S J1687
| 821027 | | | 19 | | 1 | 1 | 1 | 4.2 M | 1 | | | | 14 | | S J1692 | 821020 | | | | | 1 | 1 | 1 1 | 4.6 M | 1 | | | | 14 | | S J1693
S J1694 | 821020 | | 7 I M | | | | | | | | | | | 14 | | S J1695 | 821020
821020 | | 3.1 M | | | 1 3 M | 1 | | | | | | | 14 | | W J1696 | 821104 | | | 82 K | | 1 | 1 | 1 | | | | | | 15 | | S J1697 | 821025 | | | 02 K | | 1 | | | 77 | | 2.0 | | | 15 | | S J1698 | 821025 | | 5 KM | 30 K | | | | | 73 | | | | | 15 | | S J1699 | 821025 | | 2 | 5 KM | | i | i | i i | | 1 | | | | 15 | SHAL | W J1702 | 821112 | | i | 720 K | | i | i | i i | | i | | | | 16 | 3 | S J1703 | 821020 | | | 116 | | 1 | 1 | i i | 26 | i | | | | 16 | | S J1704 | 821020 | | | 20 | | 1 | 1 | 1 1 | | | | | | 16 | | S J1705 | 821020 | | | 7 M | | 1 | | 1 1 | 3 M | | 100 | | | 16 | | S J1706 | 821020 | | | 19 | | 1 | 1 | 1 1 | 2.8 M | | | | | 16 | | S J1707 | 821020 | | | 8.1 M | | | | 1 1 | 3.3 M | | 100 | | | 16 | | W J1708
S J1709 | 821104 | | | 430 | | ! | | !!! | | | R | | | 17 | | S J1710 | 821011
821011 | | 37 K I | 44 K
15 KM | | 1 | | !!! | | | | | | 17 | | S J1711 | 821011 | | 37 K I | | | 1 | | 1 1 | | | 100 | | | 17 | | S J1712 | 821011 | | | 1197 | | 1 | | | 36 | | | | | 17 | | S J1713 | | | | 4352 | | i | i | i | 20 | | E Total | | | 17 | | S J1714 | 821013 | | i | | | i | | i i | 3.7 M | | | | | 17 | 21 | S J1716 | 821013 | 1350 | 89 | 832 | | i | | i i | 2., | | 4. 1 . 1 1 | | | 17 | | S J1717 | 821013 | 1400 | 27 | 29 | | 1 | | i i | | | 5 3 W | | | 17 | | S J1718 | 821013 | | - 1 | 1402 | | 1 | 1 | 1 | | i i | | | | 17 | | S J1719 | | | | 2030 | | I | | 1 | | | | | | 17 | SHAL | W J0427 | 821110 | | | 42 K | | 1 | | | 920 | | | | | | | | 821110 | | | 1200 | | | party in | | | | | | | 18 | | S J1721 | 821026 | | | 11 | | | 31.79 | | | | | | | 18
18 | | S J1722
S J1723 | 821026 | | 2.5 MI | | | | | | 2.5 M | | | | | | | S J1725
W J1726 | 821026
821112 | | 2.5 MI
5 MI | | | | | | | | | | | 19 | 3 | S J1727 | 821027 | 1000 | 5 MI | וכ | | 1 | | 1 | 3.6 M | | | | | 19 | | S J1728 | | | 2.5 MI | 5 MI | | 1 | | 1 1 | 8.5 M | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ## WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON | | | | | | | | | | METHYL | | | | E S
BROMO | FLUORO | | | |---------------------|----------|------|---|----------------|------------------|------|------------------|-----|--------------------|-------------------|------------------|---------------|-----------------------|------------------|----|--------| | STATION DESCRIPTION | | WELL | | OTR
NUM | DATE | | ETHYL
BENZENE | | LENE
CHLOR I DE | CHLORO
METHANE | BROMO
METHANE | BROMO
FORM | D I CHLORO
METHANE | | | | | | 19
19 | | | J1729
J1730 | 821027
821027 | | | - | 29 | | 1 | | | 9.2 M
7.4 M | | | | | 19 | SHAL | | | 821101 | | | i | 24 | | i | i | i | 7.41 | i | i | | | 20 | | | J1734 | 821021 | | 3.0 | Mİ | 6.0 M | i | i | i | İ | 2.5 M | İ | İ | | | 20 | | | J1736 | 821021 | | 2.8 | MI | | | 1 | 1 | 3.2 M | | ļ. | ! | | | 20 | | | J1737 | 821021 | | | 1 | 16.5 | | ļ | ! | | | | | | | 20 | SHAL | | | 821104
821021 | | | - 1 | 125
21 | | 1 | 1 | | | | l
I | | | 21 | | | J1739
J1740 | 821021 | | | i | 21 | 1 | i | i | i | 3.8 M | i | i | | | 21 | | | J1741 | 821021 | | 18 | i | 9 M | i | i | i | i | 2.5 M | | Ì | | | 21 | | | J1742 | 821021 | | | 1 | 318 | l | 1 | 1 | 1 | 1 | 1 | 1 | | | 21 | SHAL | | | 821105 | | | 1 | 100 K | 1 | 1 | 1 | ! | | | | | | 22 | | | J1745 | 821012 | | 7.3 | | | | ! | ! | | 2.7 M | | | | | 22 | | | J1746 | 821012 | | 16 | | 70 | 1 | 1 | 1 | 1 | 1 2.5 M | | 1 | | | 22 | | | J1747
J1748 | 821012
821012 | | 28
21.3 | 1.5 | 30 | 1 | 1 | 1 | 1 | 2.5 M | | i | | | 22 | | | J1749 | 821012 | | 21.5 | i | 46 | | i | i | i | 59 | i | i | | | 23 | | | J1757 | 821026 | | | i | .40 | i | i | i | i | 3.2 M | i | İ | | | 23 | | | J1758 | 821026 | | | i | 8.6 M | İ | i | i | 1 | 1 4.1 M | 1 | 1 | | | 23 | | | J1759 | 821026 | | | 1 | 6 M | 1 | 1 | 1 | ! | 4.5 M | 1 | ! | | | 24 | 3 | S | J1763 | 821022 | | | | 20 | ! | ! | ! | 1 | | 1 | | | | 24 | | | J1765 | 821022 | | | - ! | 20
7 M | 1 | | | 1 2.5 M | | | | | | 24
25 | | | J1767
J1770 | 821022
821026 | | | 1 | 7 M
292 | 1 | 1 | 1 | 1 2.5 M | | | i | | | 25 | | | J1771 | 821026 | | 6 | мі | 22 | i | i | i | i | 2.5 M | i | i | | | 25 | SHAL | | | 821111 | | 19 | | | i | i | i | i | 1 | İ | İ | | | 26 | | | J1781 | 821026 | | | 1 | | 1 | 1 | 1 | 1 | 1 4.7 M | 1 | 1 | | | 26 | | | J1782 | 821026 | | | - 1 | | 1 | 1 | ļ | | 3.8 M | | 1 | | | 26 | | | J1783 | 821026 | | | 1 | 16 1 | 1 | 1 | . [| 1 | 4.2 M | | | | | 27 | SHAL | | | 821116 | | | | 16 K | | и | 1 | 1 | 1 | 1 | 1 | | | 28 | SHAL | | 10463 | 821116
821115 | | | | 630 | 14 | 1 | 1 | i | | i | 1 | | BERM #1 | 23 | | | J1787 | 821025 | | | | 2.5 M | i | i | i | i | 1 2.5 M | i | i | | BERM #2 | | | | J1788 | 821025 | | | i | | i | i | i | i | 1 2.6 M | | İ | | BERM #3 | | | | J1789 | 821025 | | | - 1 | 5.4 M | İ | İ | 1 | 1 | 3.1 M | | | | BERM #4 | | | | J1790 | 821025 | | | | 25.52 | 1 | 1 | I | 1 | 2.5 M | I | | | BERM #5 | | | | J1791 | 821025 | | | 1 | 130 | 1 | ! | ! | 1 | M | 1 | | | BERM #6 | | | | J1792 | 821025
821025 | | | 1 | 3 M | | 1 | 1 | | 6.1 M
1 7.8 M | | | | BERM #7
BERM #8 | | | | J1793
J1794 | 821025 | | | i |) M | 1 | i | 2.5 M | ni . | 4.7 M | | | | BERM #9 | | | | J1794
J1795 | 821025 | | | i | | i | i | 1 | | 1 3.1 M | | 1 | | BLANK | | | | J1797 | 821008 | | | i | 88 | ĺ | 1 | 1 | 1 | 1 | 1 | 1 | | DRILLER'S WATER | | | | J1799 | 821012 | | | 1 | 56 | ľ | 1 | 1 | 1 | | ! | | | SS#2 | | | | J1628 | 821118 | | | MI | | 1 | ! | 1 | | 1 10 M | | | | SS#3 | | | | J1629 | 821118 | | | 1 | 27 | 1 | | | | 6.1 M
3.4 M | | I
I | | SS#4 | | 0 | 5 | J1635 | 821118 | 1002 | | - 1 | 21 | 1 | 1 | 1 | | J. 4 14 | | | ORGANIC ANALYSES WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | | | | | | | | | | v o | LATIL | E S | | | | |---------------------|---------------|---|------------|--------|------|------------------|---------------------------|---------------------|------------------|---------------|------------------------------|-------------------------------|---------------------------------|---| | STATION DESCRIPTION | WELL
DEPTH | М | OTR
NUM | DATE | TIME | ETHYL
BENZENE | METHYL
LENE
CHLORID | CHLORO
E METHANE | BROMO
METHANE | BROMO
FORM | BROMO
DICHLORO
METHANE | FLUORO
TRICHLOR
METHANE | DICHLORO
DIFLUORO
METHANE | | | SS#5 |
 | - | 11641 | 001110 | 1000 | | 140 | | | | | | | | | | - | | J1641 | 821118 | | | 14.9 | ! | | | | 6.7 M | | | | SS#6 | 0 | 5 | J1646 | 821118 | 1027 | | 23 | 1 | 1 | 1 | | 1 15 | 1 | 1 | | SS#7 | 0 | S | J1647 | 821118 | 1036 | | 29 | 1 | 1 | 1 | | 1 14 | 1 | 1 | | SS#8 | 0 | S | J1659 | 821118 | 1041 | | 1 51 | 1- | 1 | 1 | 1 | 1 6.0 M | 1 | i | | SS#9 | 0 | S | J1673 | 821118 | 1044 | | 1 33 | 1 | 1 | 1 | 1 | 1 2.5 M | 1 | 1 | | SS#11 | 0 | S | J1675 | 821118 | 1050 | | 63 | 1 | 1 | 1 | 1 | 1 25 | i | İ | | SS#12 | 0 | S | J1676 | 821118 | 1053 | | 1 10 | MI | 1 | 1 | 1 | 1 8 M | 1 | 1 | | TRANSPORT BLANK | | W | J0429 | 821101 | 1100 | | 1 11 | MI | 1 | I and the | 1 | 1 | 1 | i | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 ATILES ---- | CTATION DECCE LETTON | | | | | | | | | | | | | | | | |----------------------|----|--------|---|----------------|---|-------|--|------|-------------|---------------------
----------------|-----|--|--|--| | STATION DESCRIPTION | | WELL O | | OTR
NUM | DATE | TIME | TETRA
CHLORO
ETHENE | | TOLUENE | TR ICHLOR
ETHENE | VINYL
CHLOR | | | | | | | 01 | | | J1601 | 821007 | 0900 | | | 1 | 1 3.4 M | 1 | | | | | | | 01 | | | J1602 | 821007 | 0915 | | | | 1 2.5 M | 1 | | | | | | | 01 | SHAL | | J1606 | 821108 | 1330 | | | | 13900 | | | | | | | | 01 | DEEP | | J1612 | 821108 | 1400 | | | | 46 | l | | | | | | | 02 | | | J1616 | 821014 | 1040 | 88 | | ! | | | | | | | | | 02 | | | J1617 | 821014 | | | | | 1 80 | 1 | | | | | | | 02 | SHAL | | | 821102 | 1100 | 8.4 | M | M | 13600 | | | | | | | | 03 | | | J1620
J1621 | 821014 | 1205 | | | 2.5 M | 2.5 M | | | | | | | | 04 | | | J1626 | 021014 | 1430 | | | 1 2 5 4 | 2.5 M | | | | | | | | 04 | | | J1627 | 021010 | 1430 | | | 2.5 1 | 1 2 5 14 | l | | | | | | | 04 | | | J1630 | 821102 | 1500 | | | 14000 | 2.5 M | | | | | | | | 05 | SIINL | S | J1632 | 821018 | 1330 | 2.5 | м | 1 4000 | 11800 | 250 | | | | | | | 05 | | | J1633 | 821018 | 1330 | 2.6 | M | 300 | 2.5 M | | | | | | | | 05 | | | J1634 | 821018 | | | | 126 | 1 192 | | | | | | | | 05 | SHAL | | J1636 | 821103 | | 37 | | 14100 | 1 16 K | 5 | М | | | | | | 06 | | | J1640 | 821018 | | | 1 | 14100 | 1 2.5 M | | 141 | | | | | | 06 | SHAL | | J1642 | 821103 | | | | 100 | 2200 | | | | | | | | 07 | SHAL | | 11640 | 001107 | 1 470 | 7 0 | | | 11500 | 40 | | | | | | | 08 | | | J1650 | 821025 | 1425 | 1.2 | 1-1 | 02 | 6.6 | 40 | | | | | | | 08 | | | J1651 | 821025 | 1440 | | i | | 3.1 M | | | | | | | | 08 | SHAL | | 11654 | 821108 | 1500 | 6.5 | М | 23 M | 13100 | | | | | | | | 09 | | | J1657 | 821019 | 1040 | 3.4 | MI | 25 | 2.8 M | | | | | | | | 09 | | | J1658 | 821019 | 1045 | | i | | 1 7.0 M | | | | | | | | 09 | | | J1660 | 82103
821025
821025
821108
821019
821019
821103
821019
821019
821019
821104
821008 | 1500 | | i | 2400 | I 17 K | | | | | | | | 10 | | | J1663 | 821019 | 1310 | | i | 3.7 M | | | | | | | | | 10 | 12 | S | J1664 | 821019 | 1340 | 2.5 | MI | 68 | | | | | | | | | 10 | | | J1665 | 821019 | 1405 | 2.5 | MI | 19 | 1 2.5 M | | | | | | | | 10 | SHAL | W | J1666 | 821104 | 1000 | 5 | MI | 2300 | 910 | | | | | | | | 11 | 3 | S | J1667 | | | | 1 | | 1 4 M | | | | | | | | 11 | 6 | S | J1668 | 821008 | 1115 | 2.5 | MI | 2.5 M | 1 19 | | | | | | | | 11 | 8 | 5 | 11669 | | | 2.5 | | | 38 | | | | | | | | 11 | | | J1670 | 821008 | | | 1 | 10 M | 9.5 M | | | | | | | | 11 | | | J1671 | 821008 | 1200 | 81 | 1 | | 1 312 | | | | | | | | 11 | SHAL | | J1672 | 821109 | 1030 | 5.4 | 1 | 2800 | 1 80 K | | | | | | | | 11 | DEEP | | J1678 | 821109 | 1100 | | - | 1100 | 1 14 K | | | | | | | | 12 | | | J1682 | 821025 | 1230 | | ļ | | 4.9 M | | | | | | | | 12 | | | J1683 | 821025 | 1240 | de secondo de la companya del companya de la companya del companya de la | | 4,6 | 38 | | | | | | | | 12 | SHAL | | | | 1200 | 2.4 | 1-11 | 66 | 480 | 5 | М | | | | | | 13 | | | J1686 | 821027 | | 40 | ! | 2.5 M | | | | | | | | | 14 | 3 | 5 | J1691 | 821020 | | 49 | | | I II MI | | 1-1 | | | | | | 14 | | | J1692 | 821020 | | 48 | | | | | | | | | | | 14 | | | J1693 | 821020 | | 113 | | 4.1 M | | | | | | | | | 14 | | | 11694 | 821020 | | 274 | - | | 1 169 | | | | | | | | 14 | | | J1696
J1698 | 821104
821025 | | 530 | - | 540
48 K | 3400
 580 K | | | | | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH N | OTR
NUM | DATE | TIME | TETRA
CHLORO
ETHENE | TOLUENE | TR ICHLOR
ETHENE | VINYL
CHLORIDE | | |---------------------|----------|-----------------|--------------------|------------------|--------|---------------------------|------------------|----------------------|-------------------|--| | | 15 | | J1699 | 821025 | | | | | N 1 | | | | 15 | | V J1702 | 821112 | | | | 1 210 K | | | | | 16 | | J1703 | 821020 | | | 2.5 M | | | | | | 16
16 | | J1707 | 821020 | | | 1 10 M | 6.5 M | | | | | 17 | | J1708
J1709 | 821104
821011 | | | l 18 M
l 39 K | 990 | | | | | 17 | | J1710 | 821011 | | | | 558 K | | | | | 17 | | J1711 | 821011 | | | 1 280 K | | | | | | 17 | | J1712 | 821011 | | 36 | 1 19.9K | | 1 | | | | 17 | | J1713 | 821011 | | | | 14760 | i i | | | | 17 | | J1716 | 821013 | | | | 11406 | i | | | | 17 | 24 | S J1717 | 821013 | 1400 | 2.5 M | 90 | 1 62 | 1 | | | | 17 | | J1718 | 821013 | | | 222 | 1 | 1 | | | | 17 | | J1719 | 821013 | | | 203 | 1 | | | | | 17 | | J0427 | 821110 | | | 1 22 K | | | | | | 17
18 | | J1720 | 821110 | 10.200 | 2 F M | 430 | 830 | | | | | 18 | | 5 J1721
5 J1722 | 821026
821026 | | | | 1 15 | | | | | 18 | | J1723 | 821026 | | | 2.5 M | | | | | | 18 | | J1726 | 821112 | | 7.6 M | | | | | | | 19 | | J1728 | 821027 | | 7.0 | 1 2.5 M | | i | | | | 19 | | J1729 | 821027 | | | 1 | 7.8 M | i | | | | 19 | 12 3 | J1730 | 821027 | 1120 | | 1 | 23 | 1 | | | | 20 | | J1733 | 821021 | 0940 | 509 | 1 | | It is | | | | 20 | | S J1734 | 821021 | | | 2.5 M | 27 | 1 | | | | 20 | | J1735 | 821021 | | | | 676 | | | | | 20 | | J1736 | 821021 | | 484 | 6.4 M | | | | | | 20 | | J1737 | 821021 | | 123 | | 69 | | | | | 20 | | J1738 | 821104 | | | | 11100 | | | | | 21 | | J1741
J1742 | 821021 | | 2.5 M | | | | | | | 21 | | J1742 | 821021
821021 | | | | 1520
 37 | 2 60 | | | | 21 | | 1 11744 | 821105 | | | | 1 170 K | 360 | | | | 22 | | J1745 | 821012 | | | 4.2 M | | 1 | | | | 22 | | J1746 | 821012 | | | I II M | | | | | | 22 | | J1747 | 821012 | | 2.5 M | | 1 8.2 MI | i | | | | 22 | 12 9 | J1748 | 821012 | 1030 | 2.5 M | 26 | 1 5.2 MI | 1 | | | | 22 | | J1749 | 821012 | | | 2.5 M | 2.5 M | T T | | | | 22 | | J1750 | 821110 | | | 68 | 1 380 I | 1 | | | | 22 | | J1756 | 821110 | | 100 | | 17 K | 1 | | | | 23 | | J1757 | 821026 | | | 2.5 M | | , | | | | 23 | | J1758 | 821026 | | | 1 10 M | | | | | | 23 | | J1759 | 821026 | | | 25 | | | | | | 23 | | 1 11762 | 821026 | | 77 | 85 | 1 47 1 | | | | | 24
24 | | J1765
J1766 | 821022
821022 | | 77
280 | | 1 4.7 MI
1 5.5 MI | 2.8 MI | | UNITS: LIQUID - UG/L (PPB) DISSOLVED M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 | STATION DESCRIPTION | | WELL
DEPTH N | OTR
1 NUM | DATE | TIME | TETRA
CHLORO
ETHÈNE | - | TOLUENE | | ICHLO | | V O L | |---------------------|----------|-----------------|----------------|------------------|------|---------------------------|-------|----------------|-----|-------|----|---------| | | | | | | | | - | | | | | | | | 24
25 | | J1767
J1770 | 821022 | | | MI | | | 4.81 | МІ | | | | 25 | | J1771 | 821026
821026 | | | MAI | 216 | 1 4 | 13 | 1 | 0 0 141 | | | 25 | | 1 11774 | 821111 | | | Int I | 19.5
22 M | | 6.4 l | | 2.8 MI | | | 26 | | J1781 | 821026 | | 4.2 | мі | | | 24 | 1 | 23 MI | | | 26 | | J1782 | 821026 | | 16 | ï | 5.2 M | | 80 | 1 | 1 | | | 26 | | J1783 | 821026 | | | Mİ | 2.2 11 | | 77 | i. | i | | | 26 | | J1786 | 821111 | | | i | | 113 | | i | i | | | 27 | SHAL W | J0462 | 821116 | 1100 | | 1 | 5 M | 1 1 | | 1 | i | | | 28 | SHAL W | J0463 | 821116 | 1230 | 50 | 1 | 110 | 1 8 | 40 | 1 | i | | | 29 | | J0461 | 821115 | | | - 1 | 5 M | 1 1 | 20 | 1 | i | | BERM #1 | | | J1787 | 821025 | 1000 | | 1 | | 1 | 2.5 N | MI | 1 | | BERM #3 | | | J1789 | 821025 | | - 11 | MI | | 1 | 18 | 1 | | | BERM #4 | | 1 5 | | 821025 | | | 1 | | 1 | 37 | 1 | 1 | | BERM #5 | | | J1791 | 821025 | | | - ! | | 1 | 3.1 N | | - 1 | | BERM #6
BERM #7 | | | J1792 | 821025 | | | .! | | 1 | 2.6 N | | | | BERM #8 | | | J1793 | 821025 | | | . ! | | 1 | 2.5 N | 41 | | | BERM #9 | | | J1794 | 821025 | | 2.5 | MI | 2.5 M | ! | 21 | | | | BLANK | | | J1795
J1797 | 821025
821008 | 1200 | | 1 | | 1 | 6.2 N | | 1 | | SS#2 | | | J1628 | 821118 | 0052 | 99 | 1 | 2 E M | 1 | 6.8 N | | 1 | | SS#4 | | | J1635 | 821118 | | 99 | 1 | 2.5 M
2.8 M | | 2.5 M | | | | SS#7 | | | J1647 | 821118 | | | i | 2.0 1 | i | 2.5 M | | | | SS#11 | | | J1675 | 821118 | | | i | | i | 2.5 M | | | | SS#12 | | | J1676 | 821118 | | | i | | i | 2.5 M | | - 1 | | TRANSPORT BLANK | | | J0429 | 821101 | | | i | | i | 76 | i | i | Washijten Dost of Scolg